(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n).
證明:(1)因?yàn)?x-a)n=,
所以y¢=. (2)對函數(shù)fn(x)=xn-(x-a)n求導(dǎo)數(shù):fn¢(x)=nxn-1-n(x-a)n-1,所以fn¢(n)=n[nn-1-(n-a) n-1]. 當(dāng)x³a>0時(shí),fn¢(x)>0.∴ 當(dāng)x³a時(shí),fn(x)=xn-(x-a)n是關(guān)于x的增函數(shù). 因此,當(dāng)x³a時(shí),(n+1)n-(n+1-a)n>nn-(n-a)∴ fn+1¢(n+1)=(n+1)[(n+1)n-(n+1-a)n]>(n+1)[nn-n(n-a)n]>(n+1)[nn-n(n-a)n-1]=(n+1)fn¢(n).即對任意n³a,fn+1¢(n+1)>(n+1)fn¢(n).
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
已知a>0,n為正整數(shù).(1)設(shè)y=(x-a)n,證明y¢=(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
已知a>0,n為正整數(shù)。
(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
已知a>0,n為正整數(shù).
(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com