(2011•上海)(x+
1x
6的二項(xiàng)展開(kāi)式的常數(shù)項(xiàng)為
20
20
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答:解:(x+
1
x
6的二項(xiàng)展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
6
•x6-r•x-r=
C
r
6
•x6-2r
令 6-2r=0,求得r=3,故展開(kāi)式的常數(shù)項(xiàng)為
C
3
6
=20,
故答案為 20.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)在等差數(shù)列{an}中,已知a3=4,a9=10,則a15=
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)設(shè)a>0且a≠1,若f(x)=ax的反函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(
2
2
,-
1
4
)
,則a=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的表面積是
3π+
5
π
3π+
5
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,過(guò)F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長(zhǎng)為
10
3

(1)求橢圓C的方程;
(2)若橢圓C上存在兩個(gè)不同的點(diǎn)關(guān)于直線l:y=9x+m對(duì)稱,求實(shí)數(shù)m的取值范圍.
(3)若P為橢圓C在第一象限的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓x2+y2=5的兩條切線PA、PB,切點(diǎn)為A、B,直線AB與x軸、y軸分別交于點(diǎn)M、N,求△MON(O為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案