【題目】(本小題滿分15分)
在等差數(shù)列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Sn.
【答案】(1)bn=3n-1;(2)(2)Sn=(n-1)·3n+1
【解析】本試題主要是考查了數(shù)列的概念,和數(shù)列的求和,尤其是等差數(shù)列和等比數(shù)列的性質(zhì)的運(yùn)用,以及利用錯(cuò)位相減法求解數(shù)列的和的思想的綜合運(yùn)用。
(1)根據(jù)已知的項(xiàng)之間的關(guān)系式,運(yùn)用基本元素表示得到數(shù)列的通項(xiàng)公式的求解
(2)結(jié)合第一問(wèn)中的結(jié)論,得到cn=an·bn=(2n-1)·3n-1,的通項(xiàng)公式,分析通項(xiàng)公式的特點(diǎn),選擇錯(cuò)位相減法求解數(shù)列的和。
解: (1)由a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng)得,
a22= a1·a5(a1+d)2=a1· (a1+4d) 2分
a12+2a1d+ d2 = a12+4a1dd2 =2a1d,又d≠0,所以d=2a1=2,
從而an= a1+(n-1) d=2n-1, 5分
則b1= a1=1,b2= a2=3,
則等比數(shù)列{bn}的公比q=3,從而bn=3n-1. 7分
(2)由(1)得,cn=an·bn=(2n-1)·3n-1, 8分
則Sn= 1·1+3·3+5·32+7·33+…+(2n-1)·3n-1 ①
3Sn= 1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n ② 10分
①-②得, -2Sn= 1·1+2·3+2·32+2·33+…+2·3n-1-(2n-1)·3n
=1+2×-(2n-1)·3n=-2 (n-1)·3n-2 13分
則Sn=(n-1)·3n+1. 15分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)作為客戶端越來(lái)越為人們所青睞,通過(guò)手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式.在某市,隨機(jī)調(diào)查了200名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”?
2×2列聯(lián)表:
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 120 | ||
不使用手機(jī)支付 | 48 | ||
合計(jì) | 200 |
(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”抽取一個(gè)容量為10的樣本,再?gòu)闹须S機(jī)抽取3人,求這三人中“使用手機(jī)支付”的人數(shù)的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,,數(shù)列的前項(xiàng)和,點(diǎn)()均在函數(shù)的圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前項(xiàng)和,求滿足()的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),離心率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),,為橢圓上的三點(diǎn),與交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有2009個(gè)人站成一排,從第一名開始1至3報(bào)數(shù),凡報(bào)到3的就退出隊(duì)伍,其余的向前靠攏站成新的一排.再按此規(guī)則繼續(xù)進(jìn)行,直到第次報(bào)數(shù)后只剩下3人為止.試問(wèn):最后剩下的3人最初站在什么位置?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲船在A處,乙船在A處的南偏東45°方向,距A有9海里的B處,并以20海里每小時(shí)的速度沿南偏西15°方向行駛,若甲船沿南偏東θ度的方向,并以28海里每小時(shí)的速度行駛,恰能在C處追上乙船.問(wèn)用多少小時(shí)追上乙船,并求sin θ的值.(結(jié)果保留根號(hào),無(wú)需求近似值)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com