已知拋物線C:y2=2px(p>0),過點G(3p,0)的直線l與拋物線C交于A,B兩點(點B在第四象限),O為坐標(biāo)原點,且∠OBA=90°,則直線l的斜率k=
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)直線l:y=k(x-3p),直線OB:y=-
1
k
x,聯(lián)立可得B的坐標(biāo),代入y2=2px,即可求出直線l的斜率.
解答: 解:設(shè)直線l:y=k(x-3p),直線OB:y=-
1
k
x,
聯(lián)立可得B(
3k2p
k2+1
,-
3kp
k2+1
)(k>0),
代入y2=2px可得(-
3kp
k2+1
2=2p×
3k2p
k2+1

∴k=
2
2

故答案為:
2
2
點評:本題考查直線與拋物線的位置關(guān)系,考查學(xué)生的計算能力,確定B的坐標(biāo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓過A(-1,5),B(5,5),C(6,-2)三點,求圓的方程,并畫出圓形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3,(
a
-
2b
)•(
2a
+
b
)=-1,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,求二面角A1-BD1-C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos
x
2
,1),
b
=(
3
sin
x
2
,cos2
x
2
),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若f(x)=1,求cos(
3
-2x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
、
b
滿足
a
+
b
=(2,-1),
a
=(1,2),則向量
a
b
的夾角等于(  )
A、135°B、120°
C、60°D、45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
為向量,若
a
+
b
a
的夾角為60°,
a
+
b
b
的夾角為45°,則
|
a
|
|
b
|
=( 。
A、
3
3
B、
6
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若B=
π
3
,且a+c=
3
b,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,有命題:
AB
-
AC
=
BC

AB
+
BC
+
CA
=
0
;
③若(
AB
+
AC
)•(
AB
-
AC
)=0,則△ABC為等腰三角形;
④若△ABC為直角三角形,則
AC
AB
=0.
上述命題正確的是
 
(填序號).

查看答案和解析>>

同步練習(xí)冊答案