【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結(jié)論正確的是__________

①存在點,使得平面平面;

②存在點,使得平面平面

的面積可能等于

④若分別是在平面與平面的正投影的面積,則存在點,使得

【答案】①②③④

【解析】

根據(jù)正方體的結(jié)構(gòu)特征,利用線面位置關(guān)系的判定定理和性質(zhì)定理,以及三角形的面積公式和投影的定義,即可求解,得到答案.

①如圖所示,當中點時,可知也是中點且,,所以平面,所以,同理可知

,所以平面,

平面,所以平面平面,故正確;

②如圖所示,取靠近的一個三等分點記為,記,,因為,所以,所以靠近的一個三等分點,

中點,又中點,所以,且,,所以平面平面,且平面,

所以平面,故正確;

③如圖所示,作,在中根據(jù)等面積得:

根據(jù)對稱性可知:,又,所以是等腰三角形,

,故正確;

④如圖所示,設,在平面內(nèi)的正投影為,在平面內(nèi)的正投影為,所以,,當時,解得:,故正確.

故答案為 ①②③④

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在無窮數(shù)列中,是給定的正整數(shù),,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項;

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無窮多項為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運動場地,如圖所示,其中是足球場地邊線所在的直線,球門處于所在直線的正中間位置,足球運動員(將其看做點)在運動場上觀察球門的角稱為視角.

(1)當運動員帶球沿著邊線奔跑時,設到底線的距離為碼,試求當為何值時最大;

(2)理論研究和實踐經(jīng)驗表明:張角越大,射門命中率就越大.現(xiàn)假定運動員在球場都是沿著垂直于底線的方向向底線運球,運動到視角最大的位置即為最佳射門點,以的中點為原點建立如圖所示的直角坐標系,求在球場區(qū)域內(nèi)射門到球門的最佳射門點的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

時,求的極值;

的定義域為,判斷是否存在極值若存在,試求a的取值范圍;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內(nèi),現(xiàn)將成績按區(qū)間,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內(nèi),現(xiàn)將成績按區(qū)間,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量是與向量夾角為的單位向量.

1)求向量;

2)若向量與向量共線,且的夾角為鈍角,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù)為.

1)試討論函數(shù)的零點個數(shù);

2)若對任意的,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案