如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為,點(diǎn)M的橫坐標(biāo)為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
(1)=1(2)
(1)由已知,得解得∴橢圓C的標(biāo)準(zhǔn)方程為=1.
(2)設(shè)點(diǎn)P(x1,y1)(-2<x1<3),點(diǎn)M.∵點(diǎn)F、P、M三點(diǎn)共線,x1≠-2,
,y2,∴點(diǎn)M.
∵k1,k2,∴k1·k2.
∵點(diǎn)P在橢圓C上,∴=1,∴=-(-9).
∴k1·k2.
∵-2<x1<3,∴k1·k2<-.∴k1·k2的取值范圍是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩焦點(diǎn)在軸上, 且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成斜邊長(zhǎng)為2的等腰直角三角形
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的動(dòng)直線交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以AB為直徑的圓恒過(guò)點(diǎn)Q?若存在求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點(diǎn)M、N在橢圓上,頂點(diǎn)P、Q在正方形的邊AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的邊長(zhǎng)為4,且與y軸交于E、F兩點(diǎn),正方形MNPQ的邊長(zhǎng)為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且=λ(λ>0),定點(diǎn)A(-4,0).
(1)求證:當(dāng)λ=1時(shí),;
(2)若當(dāng)λ=1時(shí),有·,求橢圓C的方程..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,若,且.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若斜率為的直線過(guò)點(diǎn)并與軌跡交于不同的兩點(diǎn),且對(duì)于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系中,方程的曲線大致是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則(  )
A.a(chǎn)2=B.a(chǎn)2=13
C.b2=D.b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F1、F2是橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且.若△PF1F2的面積為9,則b=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案