試題分析:由
,橢圓
,即
,焦點在y軸上;拋物線
,即
,焦點在x軸的負半軸上;可知答案為D.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知
A、
B、
C是長軸長為4的橢圓E上的三點,點
A是長軸的一個端點,
BC過橢圓中心
O,且
,|
BC|=2|
AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得
?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作
的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
知橢圓
的兩焦點
、
,離心率為
,直線
:
與橢圓
交于
兩點,點
在
軸上的射影為點
.
(1)求橢圓
的標準方程;
(2)求直線
的方程,使
的面積最大,并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
經過點
,一個焦點為
.
(1)求橢圓
的方程;
(2)若直線
與
軸交于點
,與橢圓
交于
兩點,線段
的垂直平分線與
軸交于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
(
)的短軸長為2,離心率為
.
(1)求橢圓C的方程
(2)若過點M(2,0)的引斜率為
的直線與橢圓C相交于兩點G、H,設P為橢圓C上一點,且滿足
(O為坐標原點),當
時,求實數(shù)
的取值范圍?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如果橢圓
上一點
到焦點
的距離為6,則點
到另一個焦點
的距離為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點P為共焦點的橢圓
和雙曲線
的一個交點,
、
分別是它們的左右焦點.設橢圓離心率為
,雙曲線離心率為
,若
,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系xOy中,橢圓C:
=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.
(1)求橢圓C的標準方程;
(2)若θ=90°,
,求實數(shù)m;
(3)試問
的值是否與θ的大小無關,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:
=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為
,點M的橫坐標為
.
(1)求橢圓C的標準方程;
(2)設直線PA的斜率為k
1,直線MA的斜率為k
2,求k
1·k
2的取值范圍.
查看答案和解析>>