【題目】國內(nèi)某知名大學有男生14000人,女生10000人.該校體育學院想了解本校學生的運動狀況,根據(jù)性別采取分層抽樣的方法從全校學生中抽取120人,統(tǒng)計他們平均每天運動的時間(已知該校學生平均每天運動的時間范圍是 ),如下表所示.

男生平均每天運動的時間分布情況:

女生平均每天運動的時間分布情況

1)假設(shè)同組中的每個數(shù)據(jù)均可用該組區(qū)間的中間值代替,請根據(jù)樣本估算該校男生平均每天運動的時間(結(jié)果精確到0.1.

2)若規(guī)定平均每天運動的時間不少于的學生為“運動達人”,低于的學生為“非運動達人”.

)根據(jù)樣本估算該!斑\動達人”的數(shù)量;

)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過0.05的前提下認為“運動達人”與性別有關(guān).

參考公式 ,其中.

參考數(shù)據(jù)

【答案】(1).2)(4000(人).)見解析.

【解析】試題分析(1)根據(jù)分層抽樣計算出男生抽取,女生抽取,由此計算出的值,并計算出男生平均運動時間.(2)(i)運動達人的比例為,故共有人是運動達人.(ii)根據(jù)數(shù)據(jù)列出聯(lián)表后,計算,故不能在犯錯誤的概率不超過0.05的前提下認為“運動達人”與性別有關(guān).

試題解析

(1)由題意得,抽取的男生人數(shù)為(人),抽取的女生人數(shù)為(人),故 .

則估算該校男生平均每天運動的時間為,

所以該校男生平均每天運動的時間為.

2)()樣本中“運動達人”所占的比例是,

故估算該校“運動達人”有(人).

)由統(tǒng)計數(shù)據(jù)得:

根據(jù)上表,可得.

故不能在犯錯誤的概率不超過0.05的前提下認為“運動達人”與性別有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)四邊形的頂點在橢圓上,且對角線、過原點,若,

(1)求的最值;

(2)求證;四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點A1-2.

I)求拋物線C的方程,并求其準線方程;

II)是否存在平行于OAO為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)設(shè)函數(shù),試討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè)函數(shù) ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)fx)=Asinωx+φ)(ω0,|φ|)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+φ

0

π

2π

x

Asinωx+φ

0

5

5

0

1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)fx)的解析式;

2)將yfx)圖象上所有點向左平移θθ0)個單位長度,得到ygx)的圖象.ygx)圖象的一個對稱中心為(,0),求θ的最小值.

3)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,補全頻率分布直方圖,并求樣本數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)和方差,(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);

(2)從被抽取的數(shù)學成績是分以上(包括分)的學生中選兩人,求他們在同一分數(shù)段的概率;

(3)假設(shè)從全市參加高一年級期末考試的學生中,任意抽取個學生,設(shè)這四個學生中數(shù)學成績?yōu)?/span>分以上(包括分)的人數(shù)為(以該校學生的成績的頻率估計概率),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,,則下列結(jié)論正確的是( )

A. 上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到曲線

B. 上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到曲線

C. 上各點的橫坐標縮短到原來的倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

D. 上各點的橫坐標伸長到原來的3倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標原點.

(Ⅰ)求的軌跡方程;

(Ⅱ)當不重合)時,求的方程及的面積.

查看答案和解析>>

同步練習冊答案