【題目】按照國家質(zhì)量標(biāo)準(zhǔn):某種工業(yè)產(chǎn)品的質(zhì)量指標(biāo)值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設(shè)備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標(biāo)值進(jìn)行檢測.表1是甲套設(shè)備的樣本頻數(shù)分布表,圖1是乙套設(shè)備的樣本頻率分布直方圖.
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套設(shè)備的樣本頻數(shù)分布表
(1)將頻率視為概率,若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?
(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為這種產(chǎn)品的質(zhì)量指標(biāo)值與甲乙兩套設(shè)備的選擇有關(guān):
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(3)根據(jù)表和圖,對甲、乙兩套設(shè)備的優(yōu)劣進(jìn)行比較.參考公式及數(shù)據(jù):x2=
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
【答案】(1)800;(2)見解析;(3)見解析
【解析】
(1)結(jié)合頻數(shù)分布表,求出滿足條件的頻率和頻數(shù);
(2)求出2×2列聯(lián)表,計算k2的值,判斷即可;
(3)根據(jù)題意,利用滿足條件的頻率與方差的含有,判斷即可.
(1)由圖知,乙套設(shè)備生產(chǎn)的不合格品率約為(0.01+0.022)×5=0.16;
∴乙套設(shè)備生產(chǎn)的5000件產(chǎn)品中不合格品約為5000×0.16=800(件);
(2)由表1和圖得到列聯(lián)表:
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |
合格品 | 48 | 42 | 90 |
不合格品 | 2 | 8 | 10 |
合計 | 50 | 50 | 100 |
將列聯(lián)表中的數(shù)據(jù)代入公式計算得K2==4>3.841;
∴有95%的把握認(rèn)為產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
(3)由表1和圖知,甲套設(shè)備生產(chǎn)的合格品的概率約為=0.96,
乙套設(shè)備生產(chǎn)的合格品的概率約為1-0.16=0.84,
且甲套設(shè)備生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值主要集中在[105,115)之間,
乙套設(shè)備生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值與甲套設(shè)備相比較為分散;
因此,可以認(rèn)為甲套設(shè)備生產(chǎn)的合格品的概率更高,且質(zhì)量指標(biāo)值更穩(wěn)定,
所以甲套設(shè)備優(yōu)于乙套設(shè)備.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,
①若曲線與直線相切,求的值;
②若曲線與直線有公共點,求的取值范圍.
(2)當(dāng)時,不等式對于任意正實數(shù)恒成立,當(dāng)取得最大值時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)=|x2﹣ax|(a∈R),設(shè)g(x)=f(x+l)﹣f(x).
(1)若y=g(x)為奇函數(shù),求a的值:
(2)設(shè)h(x),x∈(0,+∞)
①若a≤0,證明:h(x)>2:
②若h(x)的最小值為﹣1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且曲線在點處的切線與軸垂直.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意(其中為自然對數(shù)的底數(shù)),都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心在原點,半徑為R的圓交x軸正半軸于點A,P,Q是圓上的兩個動點,它們同時從點A出發(fā)沿圓周做勻速運動,點P沿逆時針方向每秒轉(zhuǎn),點Q沿順時針方向每秒轉(zhuǎn),試求P,Q出發(fā)后第五次相遇時各自轉(zhuǎn)過的弧度數(shù)及各自走過的弧長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年滕州某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元.每生產(chǎn)(百輛)新能源汽車,需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售-成本)
(2)2019年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},且A∩B={2}.
(1)求a的值及集合A,B;
(2)設(shè)全集U=A∪B,求(UA)∪(UB);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,、、分別為角、、的對邊,若.
(1)判斷的形狀,并證明;
(2)若,,為滿足題設(shè)條件的所有中線段上任意一點(可與端點重合),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經(jīng)濟些?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com