斜率為2的直線l過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,且與雙曲線的左右兩支都相交,則雙曲線的離心率e的取值范圍是( 。
A、[2,+∞)
B、(1,
3
C、(1,
5
)
D、(
5
,+∞)
考點:雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)已知直線的斜率,求出漸近線的斜率范圍,推出a,b的關(guān)系,然后求出離心率的范圍.
解答: 解:依題意,斜率為2的直線l過雙曲線C:
x2
a2
-
y2
b2
=1的右焦點
且與雙曲線的左右兩支分別相交,
結(jié)合圖形分析可知,雙曲線的一條漸近線的斜率
b
a
必大于2,即b>2a,
因此該雙曲線的離心率e=
c
a
=
a2+b2
a2
=
1+
b2
a2
1+4
=
5

故選D.
點評:本題考查雙曲線的方程和性質(zhì),考查直線的斜率的應(yīng)用,考查轉(zhuǎn)化思想,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知O(0,0)、A(2,3)、B(-4,7),則向量
OA
在向量
OB
方向上的投影等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
2015x+1+2014
2015x+1
+2014sinx,x∈[-
π
2
,
π
2
]的最大值為M,最小值為N,那么M+N=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求出函數(shù)f(x)=(
1
3
x+2,x∈[-1,2]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

六個不同顏色涂正方體六個面,相鄰面不涂相同色,有多少種不同涂法?(六種顏色可用完可不用完)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanα=2,則
sin3α+cosα
sin2α+sinα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=2,?n∈N*,an+1=
1
1-an
,則a2015=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點分別為F1(-2,0),F(xiàn)2(2,0),離心率e=
2

(Ⅰ)求雙曲線的標準方程
(Ⅱ)點P是雙曲線上一點,且∠F1PF2=30°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:|x-a|<3,q:(x-1)(4-x)>0
(1)當a=1時,若“p且q”為真命題,求實數(shù)x的取值范圍;
(2)若非p是非q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案