【題目】已知是定義在上的函數(shù),記,的最大值為.若存在,滿足,則稱一次函數(shù)是的“逼近函數(shù)”,此時(shí)的稱為在上的“逼近確界”.
(1)驗(yàn)證:是的“逼近函數(shù)”;
(2)已知.若是的“逼近函數(shù)”,求的值;
(3)已知的逼近確界為,求證:對(duì)任意常數(shù),.
【答案】(1)見(jiàn)解析,(2),,(3)證明見(jiàn)解析
【解析】
(1),
因?yàn)?/span>,故的值域?yàn)?/span>,故,
令,解得或或.
取,,,則, ,,
且,故是的“逼近函數(shù)”.
(2),
因?yàn)?/span>且是的“逼近函數(shù)”,
故在和取最小值且在內(nèi)取最大值.
令,從而,令則
即,故.
(3)同(2),,令,從而.
因?yàn)?/span>的逼近確界為,
由逼近確界的定義可得:存在,使得.
對(duì)于任意的, .
故時(shí),有,
故,
所以,故.
故時(shí),有,
故,
所以,
由基本不等式可得,故
故.
綜上,對(duì)任意的,有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”近年來(lái)成為了百姓耳熟能詳?shù)臒衢T詞匯,對(duì)于旅游業(yè)來(lái)說(shuō),“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡(jiǎn)單范疇,賦予了旅游促進(jìn)跨區(qū)域融合的新理念. 而其帶來(lái)的設(shè)施互通、經(jīng)濟(jì)合作、人員往來(lái)、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來(lái)巨大的發(fā)展機(jī)遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)10天的游客數(shù),統(tǒng)計(jì)得到莖葉圖如下:
(1)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時(shí)期內(nèi)任取4天,記其中游客數(shù)超過(guò)130人的天數(shù)為,求概率 ;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,…,是由()個(gè)整數(shù),,…,按任意次序排列而成的數(shù)列,數(shù)列滿足().
(1)當(dāng)時(shí),寫(xiě)出數(shù)列和,使得.
(2)證明:當(dāng)為正偶數(shù)時(shí),不存在滿足()的數(shù)列.
(3)若,,…,是,,…,按從大到小的順序排列而成的數(shù)列,寫(xiě)出(),并用含的式子表示.
(參考:.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn),的坐標(biāo)分別為,,直線和相交于點(diǎn),且和的斜率之差是1.
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)軌跡上的點(diǎn),,作圓:的兩條切線,分別交軸于點(diǎn),.當(dāng)的面積最小時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形中,,與相交于點(diǎn),將沿折起,使頂點(diǎn)至點(diǎn),在折起的過(guò)程中,下列結(jié)論正確的是( )
A.B.存在一個(gè)位置,使為等邊三角形
C.與不可能垂直D.直線與平面所成的角的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線()與雙曲線(,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個(gè)交點(diǎn),且軸,則該雙曲線經(jīng)過(guò)一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)).直線的參數(shù)方程(為參數(shù)).
(Ⅰ)求曲線在直角坐標(biāo)系中的普通方程;
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點(diǎn)極坐標(biāo)為時(shí),求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com