【題目】已知圓的方程為(x﹣1)2+(y﹣1)2=1,P點坐標(biāo)為(2,3), 求:
(1)過P點的圓的切線長.
(2)過P點的圓的切線方程.

【答案】
(1)解:圓的圓心C為(1,1),CA=CB=1,|PC|= = ,則切線長|PA|= =2,
(2)解:若切線的斜率存在,可設(shè)切線的方程為y﹣3=k(x﹣2)

即kx﹣y﹣2k+3=0

則圓心到切線的距離 ,解得

故切線的方程為3x﹣4y+6=0

若切線的斜率不存在,切線方程為x=2,此時直線也與圓相切.

綜上所述,過P點的切線的方程為3x﹣4y+6=0和x=2.


【解析】(1)利用勾股定理,求出過P點的圓的切線長.(2)分類討論,利用圓心到直線的距離等于半徑,即可過P點的圓的切線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有( 。
A.1個
B.2個
C.3個
D.無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l: (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(1)若點M的直角坐標(biāo)為(2, ),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利民奶牛場在2016年年初開始改進(jìn)奶牛飼養(yǎng)方法,同時每月增加一定數(shù)目的產(chǎn)奶奶牛,2016年2到5月該奶牛場的產(chǎn)奶量如表所示:

月份

2

3

4

5

產(chǎn)奶量y(噸)

2.5

3

4

4.5


(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預(yù)測該奶牛場6月份的產(chǎn)奶量? (注:回歸方程 = x+ 中, = = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中共有15個除了顏色外完全相同的球,其中有10個白球,5個紅球.從袋中任取2個球,所取的2個球中恰有1個白球,1個紅球的概率為(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一簡單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點,求證:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S﹣ABC中,△ABC是邊長為2 的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.

(1)證明:AC⊥SB;
(2)求三棱錐B﹣CMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+2x . (Ⅰ)試寫出這個函數(shù)的性質(zhì)(不少于3條,不必說明理由),并作出圖象;
(Ⅱ)設(shè)函數(shù)g(x)=4x+4x﹣af(x),求這個函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明 ,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.(3k+2)
B.(3k+4)
C.(3k+2)+(3k+3)
D.(3k+2)+(3k+3)+(3k+4)

查看答案和解析>>

同步練習(xí)冊答案