精英家教網 > 高中數學 > 題目詳情

【題目】袋中共有15個除了顏色外完全相同的球,其中有10個白球,5個紅球.從袋中任取2個球,所取的2個球中恰有1個白球,1個紅球的概率為(
A.
B.
C.
D.1

【答案】B
【解析】解:這是一個古典概型,從15個球中任取2個球的取法有 ;
∴基本事件總數為105;
設“所取的2個球中恰有1個白球,1個紅球”為事件A;
則A包含的基本事件個數為 =50;
∴P(A)=
故選:B.
首先判斷這是一個古典概型,從而求基本事件總數和“所取的2個球中恰有1個白球,1個紅球”事件包含的基本事件個數,容易知道基本事件總數便是從15個球任取2球的取法,而在求“所取的2個球中恰有1個白球,1個紅球”事件的基本事件個數時,可利用分步計數原理求解,最后帶入古典概型的概率公式即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,將曲線上的所有點橫坐標伸長為原來的倍,縱坐標伸長為原來的2倍后,得到曲線,在以為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程是.

(1)寫出曲線的參數方程和直線的直角坐標方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=﹣ x2+(a﹣1)x+lnx.
(1)若a>﹣1,求函數f(x)的單調區(qū)間;
(2)若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市在對學生的綜合素質評價中,將其測評結果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高二年級有男生500人,女生400人,為了解性別對該綜合素質評價結果的影響,采用分層抽樣的方法從高二學生中抽取了90名學生的綜合素質評價結果,其各個等級的頻數統(tǒng)計如表:

等級

優(yōu)秀

合格

不合格

男生(人)

30

x

8

女生(人)

30

6

y

根據表中統(tǒng)計的數據填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為“綜合素質評價測評結果為優(yōu)秀與性別有關”?

男生

女生

總計

優(yōu)秀

非優(yōu)秀

總計

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(2)以(1)中抽取的90名學生的綜合素質評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高二學生中隨機抽取4人.
(i)求所選4人中恰有3人綜合素質評價為“優(yōu)秀”的概率;
(ii)記X表示這4人中綜合素質評價等級為“優(yōu)秀”的人數,求X的數學期望.
附:參考數據與公式
參考公式:K2= ,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某學校組織的一次智力競賽中,比賽共分為兩個環(huán)節(jié),其中第一環(huán)節(jié)競賽題有A、B兩組題,每個選手最多有3次答題機會,答對一道A組題得20分,答對一道B組題得30分.選手可以任意選擇答題的順序,如果前兩次得分之和超過30分即停止答題,進入下一環(huán)節(jié)比賽,否則答3次.某同學正確回答A組題的概率都是p,正確回答B(yǎng)組題的概率都是 ,且回答正確與否相互之間沒有影響.該同學選擇先答一道B組題,然后都答A組題.已知第一環(huán)節(jié)比賽結束時該同學得分超過30分的概率為
(1)求p的值;
(2)用ξ表示第一環(huán)節(jié)比賽結束后該同學的總得分,求隨機變量ξ的數學期望;
(3)試比較該同學選擇都回答A組題與選擇上述方式答題,能進入下一環(huán)節(jié)競賽的概率的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的方程為(x﹣1)2+(y﹣1)2=1,P點坐標為(2,3), 求:
(1)過P點的圓的切線長.
(2)過P點的圓的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2+2bx+c(b,c∈R).
(1)若函數y=f(x)的零點為﹣1和1,求實數b,c的值;
(2)若f(x)滿足f(1)=0,且關于x的方程f(x)+x+b=0的兩個實數根分別在區(qū)間(﹣3,﹣2),(0,1)內,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

函數的圖象與的圖象無公共點,求實數的取值范圍;

是否存在實數,使得對任意的,都有函數的圖象在的圖象的下方?若存在,請求出整數的最大值;若不存在,請說理由.

(參考數據:,,).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;

(2)已知某人一天的走路步數超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯(lián)表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案