設(shè)函數(shù),其導(dǎo)函數(shù)為.
(1)若,求函數(shù)在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若為整數(shù),若時,恒成立,試求的最大值.

(1);(2)的單調(diào)減區(qū)間是:,增區(qū)間是:;(3)整數(shù)k的最大值為2.

解析試題分析:(1)時,,求導(dǎo)函數(shù),可得切線方程;(2),當(dāng)上單調(diào)遞增,當(dāng)時,通過可得函數(shù)的單調(diào)區(qū)間;(3)若時,恒成立,只需的最小值即可,,又單調(diào)遞增,而,知存在唯一的零點(diǎn),故存在唯一的零點(diǎn),得.可得整數(shù)k的最大值為2.
解:(1)因為時,,所以,
故切線方程是 
(2)的定義域為R,
上單調(diào)遞增;
解得
當(dāng)變化時,變化如下表:











          極小值
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)
          (1)求函數(shù)的極值;
          (2)設(shè)函數(shù),對,都有,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)為自然對數(shù)的底數(shù)).
          (1)求曲線處的切線方程;
          (2)若的一個極值點(diǎn),且點(diǎn),滿足條件:.
          (ⅰ)求的值;
          (ⅱ)若點(diǎn)是三個不同的點(diǎn), 判斷三點(diǎn)是否可以構(gòu)成直角三
          角形?請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,用鐵絲彎成一個上面是半圓,下面是矩形的圖形,其面積為
          為使所用材料最省,底寬應(yīng)為多少米?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (1)若時有極值,求實(shí)數(shù)的值和的極大值;
          (2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (1)求的單調(diào)增區(qū)間;
          (2)時,函數(shù)有三個互不相同的零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)求函數(shù)在區(qū)間上的值域;
          (2)是否存在實(shí)數(shù)a,對任意給定的,在區(qū)間上都存在兩個不同的,使得成立.若存在,求出a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),其中.
          (1)求函數(shù)的定義域(用區(qū)間表示);
          (2)討論函數(shù)上的單調(diào)性;
          (3)若,求上滿足條件的集合(用區(qū)間表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)
          (1)時,求最小值;
          (2)若是單調(diào)減函數(shù),求取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案