【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
與的情況如上:
所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(Ⅱ)當(dāng),即時,函數(shù)在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時,
由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時,函數(shù)在上單調(diào)遞減,
所以在區(qū)間上的最小值為.
綜上,當(dāng)時,的最小值為;
當(dāng)時,的最小值為;
當(dāng)時,的最小值為.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,過作的兩弦與,若,求證: 直線過定點(diǎn).
【答案】(1)或;(2)證明見解析.
【解析】試題分析:(1)當(dāng)焦點(diǎn)在軸時,設(shè)的方程為,當(dāng)焦點(diǎn)在軸時,設(shè)的方程為,分別代入點(diǎn),求得的值,即可得到拋物線的方程;(2)因?yàn)辄c(diǎn)在上,所以曲線
的方程為,設(shè)點(diǎn),用直線與曲線方程聯(lián)立,利用韋達(dá)定理整理得到,即可得到,判定直線過定點(diǎn).
試題解析:(1)當(dāng)焦點(diǎn)在軸時,設(shè)的方程為,代人點(diǎn)得,即.當(dāng)焦點(diǎn)在軸時,設(shè)的方程為,代人點(diǎn)得,即,
綜上可知: 的方程為或.
(2)因?yàn)辄c(diǎn)在上,所以曲線的方程為.
設(shè)點(diǎn),
直線,顯然存在,聯(lián)立方程有: .,
即即.
直線即直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)一天中不同時刻的用電量(萬千瓦時)關(guān)于時間(小時,)的函數(shù)近似滿足,如圖是函數(shù)的部分圖象(對應(yīng)凌晨點(diǎn)).
(Ⅰ)根據(jù)圖象,求的值;
(Ⅱ)由于當(dāng)?shù)囟眷F霾嚴(yán)重,從環(huán)保的角度,既要控制火力發(fā)電廠的排放量,電力供應(yīng)有限;又要控制企業(yè)的排放量,于是需要對各企業(yè)實(shí)行分時拉閘限電措施.已知該企業(yè)某日前半日能分配到的供電量 (萬千瓦時)與時間(小時)的關(guān)系可用線性函數(shù)模型模擬.當(dāng)供電量小于該企業(yè)的用電量時,企業(yè)就必須停產(chǎn).初步預(yù)計停產(chǎn)時間在中午11點(diǎn)到12點(diǎn)間,為保證該企業(yè)既可提前準(zhǔn)備應(yīng)對停產(chǎn),又可盡量減少停產(chǎn)時間,請從這個初步預(yù)計的時間段開始,用二分法幫其估算出精確到15分鐘的停產(chǎn)時間段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個作為樣本,稱出它們的重量單位:克,重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖如圖.
(1)求的值,并根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的眾數(shù)與平均值;
(2)從盒子中隨機(jī)抽取3個小球,其中重量內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】∵,
∴,
由得,
∴函數(shù)的單調(diào)減區(qū)間為,
又函數(shù)在區(qū)間上單調(diào)遞減,
∴ ,
∴,解得,
∴實(shí)數(shù)的取值范圍是.選C.
點(diǎn)睛:已知函數(shù)在區(qū)間上的單調(diào)性求參數(shù)的方法
(1)利用導(dǎo)數(shù)求解,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于零(或小于等于零)恒成立的問題求解,一般通過分離參數(shù)化為求函數(shù)的最值的問題.
(2)先求出已知函數(shù)的單調(diào)區(qū)間,然后將問題轉(zhuǎn)化為所給的區(qū)間是函數(shù)相應(yīng)的單調(diào)區(qū)間的子集的問題處理.
【題型】單選題
【結(jié)束】
7
【題目】設(shè),函數(shù)的圖象向右平移個單位長度后與原圖象重合,則的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),且.
(Ⅰ)求的定義域;
(Ⅱ)判斷的奇偶性并予以證明;
(Ⅲ)當(dāng)時,求使的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽,且對任意的x,y∈R有f(x+y)=f(x)+f(y)當(dāng)時,,f(1)=1
(1)求f(0),f(3)的值;
(2)判斷f(x)的單調(diào)性并證明;
(3)若f(4x-a)+f(6+2x+1)>2對任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=-1.其中>0且≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解關(guān)于x的不等式-1<f(x-1)<4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com