精英家教網 > 高中數學 > 題目詳情
(2010•鄭州三模)已知θ是三角形的一個內角,且sinθ、cosθ是關于x的方程2x2+px-1=0的兩根,則θ等于( 。
分析:利用韋達定理,結合同角三角函數平方關系,即可得出結論.
解答:解:∵sinθ、cosθ是關于x的方程2x2+px-1=0的兩根,
sinθ+cosθ=-
p
2
sinθcosθ=-
1
2

∴①2-②×2,可得
p2
4
+1=1

∴p=0
∴sinθ+cosθ=0
∵θ是三角形的一個內角,
∴θ=
4

故選C.
點評:本題考查三角函數的求值,考查韋達定理的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•鄭州三模)各項都是正數的等比數列{an}的公比q≠1,且a2,
1
2
a3
,a1成等差數列,則
a3+a4
a4+a5
的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•鄭州三模)已知向量
a
=(3,4),
b
=(2,-1)
,如果向量
a
+x
b
-
b
垂直,則x的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•鄭州三模)從正方體的八個頂點中任取四個點連線,在能構成的一對異面直線中,其所成的角的度數不可能是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•鄭州三模)設雙曲線
x2
3
-
y2
6
=1
的焦點為F1、F2,過F1作x軸的垂線與該雙曲線相交,其中一個交點為M,則|
MF2
|=( 。

查看答案和解析>>

同步練習冊答案