【題目】(本小題滿分12分)某公司生產(chǎn)的商品A每件售價(jià)為5元時(shí),年銷售10萬(wàn)件,

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高一元,銷量相應(yīng)減少1萬(wàn)件,要使銷售收入不低于原銷售收入,該商品的銷售價(jià)格最多提高多少元?

(2)為了擴(kuò)大該商品的影響力,公司決定對(duì)該商品的生產(chǎn)進(jìn)行技術(shù)革新,將技術(shù)革新后生產(chǎn)的商品售價(jià)提高到每件元,公司擬投入萬(wàn)元作為技改費(fèi)用,投入萬(wàn)元作為宣傳費(fèi)用。試問(wèn):技術(shù)革新后生產(chǎn)的該商品銷售量m至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和?

【答案】(1)5;(2)

【解析】

試題(1)設(shè)商品的銷售價(jià)格提高a元,

, 3分,

,,

商品的價(jià)格最多可以提高5元 5分,

(2)由題意得,改革后的銷售收入為mx萬(wàn)元,若改革后的銷售收入不低于原銷售收入與總投入總和,只需滿足

即可 .7分,

..9分

,

當(dāng)且僅當(dāng),即x=10時(shí),取得=號(hào) ..11分

答:銷售量至少應(yīng)達(dá)到萬(wàn)件時(shí),才能使改革后的銷售收入等于原銷售收入與總投入之和 ..12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

() 證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,過(guò)點(diǎn)P1,0)的直線l的參數(shù)方程為為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知頂點(diǎn)在極軸上,開口向右的拋物線C經(jīng)過(guò)極坐標(biāo)為(2, )的點(diǎn)Q.

1)求C的極坐標(biāo)方程;

2)若lC交于A、B兩點(diǎn),且|PA|=2|PB|,求tan的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]已知直線l過(guò)原點(diǎn)且傾斜角為, ,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C 的極坐標(biāo)方程為psin =4cos.

(I)寫出直線l的極坐標(biāo)方程和曲線C 的直角坐標(biāo)方程;

()已知直線l過(guò)原點(diǎn)且與直線l相互垂直,lC=-M,lC=N,其中M,N不與原點(diǎn)重合,求OMN 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某集團(tuán)為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查投入廣告費(fèi)t(百萬(wàn)元),可增加銷售額約為-t25t(百萬(wàn)元)(0t5) (注:收益=銷售額-投放)

1)若該公司將當(dāng)年的廣告費(fèi)控制在3百萬(wàn)元之內(nèi),則應(yīng)投入多少?gòu)V告費(fèi),才能使該公司由此獲得的收益最大?

2)現(xiàn)該公司準(zhǔn)備共投入3百萬(wàn)元,分別用于廣告促銷和技術(shù)改造.經(jīng)預(yù)測(cè),每投入技術(shù)改造費(fèi)x(百萬(wàn)元),可增加的銷售額約為-x3x23x(百萬(wàn)元).請(qǐng)?jiān)O(shè)計(jì)一個(gè)資金分配方案,使該公司由此獲得的收益最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)都滿足: 恒成立,則稱此直線的“隔離直線”,已知函數(shù), ,有下列命題:

內(nèi)單調(diào)遞增;

之間存在“隔離直線”,且的最小值為-4;

之間存在“隔離直線”,且的取值范圍是

之間存在唯一的“隔離直線”.

其中真命題的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一年來(lái),某足球隊(duì)的足球運(yùn)動(dòng)員每天進(jìn)行距離球門米遠(yuǎn)的射門訓(xùn)練次,若打進(jìn)球門算成功,否則算失。S機(jī)提取該球員連續(xù)天的成功次數(shù)統(tǒng)計(jì)如下:

1)估計(jì)該球員一天射門成功次數(shù)的四分位數(shù);

2)若每天三位球員均進(jìn)行三角戰(zhàn)術(shù)配合訓(xùn)練,要求三位球員在運(yùn)動(dòng)中必須保持如下規(guī)則:三人所在的位置構(gòu)成,的面積(平方米).求球員之間的距離的最小值(米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:

組別

頻數(shù)

頻率

145.5149.5

8

0.16

149.5153.5

6

0.12

153.5157.5

14

0.28

157.5161.5

10

0.20

161.5165.5

8

0.16

165.5169.5



合計(jì)



1)求出表中字母所對(duì)應(yīng)的數(shù)值;

2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;

3)估計(jì)該校高一女生身高在149.5165.5范圍內(nèi)有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)和數(shù)列滿足下列條件:,,當(dāng)時(shí),,其中、均為非零常數(shù).

1)若是等差數(shù)列,求實(shí)數(shù)的值;

2)令),若,求數(shù)列的通項(xiàng)公式;

3)令),若,數(shù)列滿足,若數(shù)列有最大值,最小值,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案