【題目】一年來,某足球隊的足球運動員每天進行距離球門米遠的射門訓練次,若打進球門算成功,否則算失敗.隨機提取該球員連續(xù)天的成功次數(shù)統(tǒng)計如下:

1)估計該球員一天射門成功次數(shù)的四分位數(shù);

2)若每天三位球員均進行三角戰(zhàn)術配合訓練,要求三位球員在運動中必須保持如下規(guī)則:三人所在的位置構成,,的面積(平方米).求球員之間的距離的最小值(米).

【答案】1)第,,分位數(shù)分別約為:,;(24.

【解析】

(1)首先將球員連續(xù)天的成功次數(shù)從小到大排序,按照四分位數(shù)的定義計算;

(2)根據(jù)面積公式計算可得,再根據(jù)余弦定理,結合基本不等式計算求得距離的最小值.

解:(1)將該球員連續(xù)天的成功次數(shù)從小到大排序,可得

因為,,

所以,樣本數(shù)據(jù)的第分位數(shù)等于,第分位數(shù)等于,

分位數(shù)等于

所以該球員一天射門成功次數(shù)的第,分位數(shù)分別約為:,,

2)設的內角所對的邊分別為,則

因為,所以

由余弦定理知:

所以(當且僅當時等號成立)

所以

所以球員之間的距離的最小值是(米)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.

)請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).

)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xe+1

(I)求函數(shù)y=f(x)的圖象在點(0,f(0))處的切線方程;

(II)若函數(shù)gx=fx-ae-x,求函數(shù)g(x)[1,2]上的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)某公司生產的商品A每件售價為5元時,年銷售10萬件,

(1)據(jù)市場調查,若價格每提高一元,銷量相應減少1萬件,要使銷售收入不低于原銷售收入,該商品的銷售價格最多提高多少元?

(2)為了擴大該商品的影響力,公司決定對該商品的生產進行技術革新,將技術革新后生產的商品售價提高到每件元,公司擬投入萬元作為技改費用,投入萬元作為宣傳費用。試問:技術革新后生產的該商品銷售量m至少應達到多少萬件時,才可能使技術革新后的該商品銷售收入等于原銷售收入與總投入之和?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),當時,的極大值為7;當時,有極小值.

(1)的值;

(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是首項為a,公差為d的等差數(shù)列(d≠0), 是其前n項的和.記,n∈N*,其中c為實數(shù).

(1)若c=0,且b1b2,b4成等比數(shù)列,證明:Snkn2Sk(k,n∈N*);

(2)若{}是等差數(shù)列,證明:c=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得, ,

,

(1).求家庭的月儲蓄對月收入的線性回歸方程;

(2).判斷變量之間的正相關還是負相關;

(3).若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

附:回歸直線的斜率和截距的最小二乘估計公式分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的極小值點,求實數(shù)的取值范圍及函數(shù)的極值;

Ⅱ)當,求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 是坐標原點,設函數(shù)的圖象為直線,且軸、軸分別交于、兩點,給出下列四個命題:

存在正實數(shù),使的面積為的直線僅有一條;

存在正實數(shù),使的面積為的直線僅有二條;

存在正實數(shù),使的面積為的直線僅有三條;

存在正實數(shù),使的面積為的直線僅有四條.

其中,所有真命題的序號是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

查看答案和解析>>

同步練習冊答案