已知函數(shù),若將其圖象繞原點逆時針旋轉(zhuǎn)角后,所得圖象仍是某函數(shù)的圖象,則當(dāng)角θ取最大值θ0時,tanθ0=( )

A. B. C. D.

 

C

【解析】

試題分析:若函數(shù)f(x)逆時針旋轉(zhuǎn)角θ后所得曲線仍是一函數(shù),根據(jù)函數(shù)的定義中的“唯一性”可得函數(shù)f(x)的圖象與任一斜率為tanθ的直線y=tanθx+b均不能有兩個以上的交點,進(jìn)而可得答案.

【解析】
由題意可得:

當(dāng)函數(shù)上動點P(x,)與原點連線與函數(shù)的圖象相切時

旋轉(zhuǎn)角θ取最大值θ0,

此時=f′(x)=

解得x=e

此時tanθ0=

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 2.2矩陣乘法的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

若矩陣是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上( )

A.語文 B.數(shù)學(xué) C.外語 D.都一樣

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:填空題

(2014•浦東新區(qū)二模)函數(shù)f(x)=的最大值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題

在同一平面直角坐標(biāo)系中,直線x﹣2y=2變成直線2x′﹣y′=4的伸縮變換是 則λ+μ= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題

(2013•石家莊二模)將函數(shù)y=﹣x2+x(e∈[0,1])的圖象繞點M(1,0)順時針旋轉(zhuǎn)θ角 (0<θ<)得到曲線C,若曲線C仍是一個函數(shù)的圖象,則角θ的最大值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

若圓x2+y2=4上每個點的橫坐標(biāo)不變.縱坐標(biāo)縮短為原來的,則所得曲線的方程是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得到的直線為( )

A.x=0 B.y=0 C.y=x D.y=﹣x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

(2003•北京)如圖,已知底面半徑為r的圓柱被一個平面所截,剩下部分母線長的最大值為a,最小值為b,那么圓柱被截后剩下部分的體積是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

(2010•海門市模擬)如圖,已知∠DEC=80°,弧CD的度數(shù)與弧AB的度數(shù)的差為20°,則∠DAC的度數(shù)為 .

 

 

查看答案和解析>>

同步練習(xí)冊答案