已知函數(shù)f(x)=ax2+bx-1(a,b∈R且a>0)有兩個零點,其中一個零點在區(qū)間(1,2)內(nèi),則a-b的取值范圍是


  1. A.
    (-1,1)
  2. B.
    (-1,+∞)
  3. C.
    (-2,1)
  4. D.
    (-2,+∞)
B
分析:由題意知,一個根在區(qū)間(1,2)內(nèi),得關(guān)于a,b的等式,再利用線性規(guī)劃的方法求出a-b的取值范圍.
解答:解:設(shè)f(x)=ax2+bx-1=0,由題意得,f(1)<0,f(2)>0,
∴a+b-1<0,4a+2b-1<0.且a>0.
,視a,b為變量,作出可行域如圖.
令a-b=t,
∴當直線a-b=t過A點(0,1)時,t最小是-1,無最大值
∴-1<t.
故選B.
點評:線性規(guī)劃的介入,為研究函數(shù)的最值或最優(yōu)解提供了新的方法,借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案