精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,已知直線的直角坐標方程為,曲線的參數方程為為參數),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線和直線的極坐標方程;

2)已知直線與曲線相交于異于極點的點,若的極徑分別為,求的值.

【答案】1,.2

【解析】

1)先將曲線的參數方程化為直角坐標方程,即可代入公式化為極坐標;根據直線的直角坐標方程,求得傾斜角,即可得極坐標方程.

2)將直線的極坐標方程代入曲線、可得,進而代入可得的值.

1)曲線的參數方程為為參數),

消去

,代入得

從而得的極坐標方程為,

∵直線的直角坐標方程為,其傾斜角為,

∴直線的極坐標方程為.

2)將代入曲線的極坐標方程分別得到

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,其中為自然對數的底數.

(1)若處取到極小值,求的值及函數的單調區(qū)間;

(2)若當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學名著,它在幾何學中的研究比西方早1000多年,在《九章算術》中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當鱉膈體積最大時,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】工廠質檢員從生產線上每半個小時抽取一件產品并對其某個質量指標進行檢測,一共抽取了件產品,并得到如下統(tǒng)計表.該廠生產的產品在一年內所需的維護次數與指標有關,具體見下表.

質量指標

頻數

一年內所需維護次數

(1)以每個區(qū)間的中點值作為每組指標的代表,用上述樣本數據估計該廠產品的質量指標的平均值(保留兩位小數);

(2)用分層抽樣的方法從上述樣本中先抽取件產品,再從件產品中隨機抽取件產品,求這件產品的指標都在內的概率;

(3)已知該廠產品的維護費用為元/次,工廠現推出一項服務:若消費者在購買該廠產品時每件多加元,該產品即可一年內免費維護一次.將每件產品的購買支出和一年的維護支出之和稱為消費費用.假設這件產品每件都購買該服務,或者每件都不購買該服務,就這兩種情況分別計算每件產品的平均消費費用,并以此為決策依據,判斷消費者在購買每件產品時是否值得購買這項維護服務?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拉丁舞,又稱拉丁風情舞或自由社交舞,它是拉丁人民在漫長的歷史長河中形成的,包含倫巴、恰恰、牛仔舞、桑巴、斗牛舞、深受人民的喜愛.某藝術培訓機構為了調查本校學院對拉丁舞的學習情況,分別在剛學習了一個季度的本校大班(8歲以下)及種子班(8歲以上)的學員中各隨機抽取了15名學員進行摸底考試,這30名學員考試成績的莖葉圖如圖所示.

規(guī)定:成績不低于85分,則認為成績優(yōu)秀;成績低于85分,則認為成績一般.

1)根據上述數據填寫下列2×2聯(lián)表:

成績優(yōu)秀

成績一般

總計

大班

種子班

總計

判斷是否有95%的把握認為成績優(yōu)秀或成績一般與學員的年齡有關;

2)在大班及種子班的參加摸底考試且成績優(yōu)秀的學員中以分層抽樣的方式抽取6名學員進行特別集訓,集訓后,再對這6名學員進行測試,按測試成績,取前3名授予“舞蹈小精靈”稱號,在被授予“舞蹈小精靈”稱號的學員中,求種子班的學員恰好有2人的概率.

參考公式及數據:,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點O為坐標原點,橢圓C:(a>b>0)的左、右焦點分別為F1,F2,離心率為,點I,J分別是橢圓C的右頂點、上頂點,IOJ的邊IJ上的中線長為

(1)求橢圓C的標準方程;

(2)過點H(-2,0)的直線交橢圓C于A,B兩點,若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系,曲線的參數方程為是參數).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為

(1)求的直角坐標方程和的普通方程;

(2)相交于兩點,設點上異于的一點,面積最大時,求點的距離

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數().

1)討論的單調性;

2)若對恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案