【題目】已知函數(shù)f(x)=x+ 是奇函數(shù).
(1)若點(diǎn)Q(1,3)在函數(shù)f(x)的圖象上,求函數(shù)f(x)的解析式;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間(不要解答過程,只寫結(jié)果);
(3)設(shè)點(diǎn)A(t,0),B(t+1,0)(t∈R),點(diǎn)P在f(x)的圖象上,且△ABP的面積為2,若這樣的點(diǎn)P恰好有4個,求實數(shù)a的取值范圍.
【答案】
(1)解:函數(shù)f(x)=x+ 是奇函數(shù),則f(x)+f(﹣x)=0恒成立,即x+ b=0.∴f(x)=x+ (a>0).
∵Q(1,3)在函數(shù)f(x)的圖象上,∴1+a=3,∴a=2,∴f(x)=x+ .(x≠0).
(2)解:f(x)=x+ (a>0).的增區(qū)間為:(﹣∞,﹣ ),( ,+∞);減區(qū)間為:(﹣ ,0),(0, ).
(3)解:∵點(diǎn)A(t,0),B(t+1,0)(t∈R)在橫軸上,且AB=1,
∴在f(x)的圖象上恰好有4個點(diǎn),使△ABP的面積為2在f(x)的圖象上恰好有4個點(diǎn)到橫軸的距離等于4,
如圖所示,函數(shù)f(x)的圖象與y=4,y=﹣4各有兩個交點(diǎn),即f(x)min<4,2 <4,解得0<a<4.
∴實數(shù)a的取值范圍為:(0,4).
【解析】(1)f(x)+f(﹣x)=0恒成立,可得b=0.Q(1,3)在函數(shù)f(x)的圖象上,可得a=2即可. (2)由對勾函數(shù)圖象可得;(3)在f(x)的圖象上恰好有4個點(diǎn),使△ABP的面積為2在f(x)的圖象上恰好有4個點(diǎn)到橫軸的距離等于4,即f(x)min<4,2 <4,解得a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,已知A(﹣2,0),直角頂點(diǎn)B(0,﹣2 ),點(diǎn)C在x軸上.
(Ⅰ)求Rt△ABC外接圓的方程;
(Ⅱ)求過點(diǎn)(﹣4,0)且與Rt△ABC外接圓相切的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2xsinθ﹣1,x∈[﹣ , ].
(1)當(dāng) 時,求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在x∈[﹣ , ]上是單調(diào)增函數(shù),且θ∈[0,2π],求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時, f(x)= ,
則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點(diǎn)之和為( )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1﹣m≤x≤2m+1},B= .
(1)當(dāng)m=2時,求A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力部門需在A、B兩地之間架設(shè)高壓電線,因地理條件限制,不能直接測量A、B兩地距離.現(xiàn)測量人員在相距 km的C、D兩地(假設(shè)A、B、C、D在同一平面上)測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如圖),假如考慮到電線的自然下垂和施工損耗等原因,實際所須電線長度為A、B距離的 倍,問施工單位應(yīng)該準(zhǔn)備多長的電線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)若E為線段PA上一點(diǎn),且 ,求二面角P﹣OE﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com