【題目】在平面直角坐標(biāo)系中,動點(diǎn)P到兩點(diǎn)、的距離之差的絕對值等于.設(shè)點(diǎn)P的軌跡為C.

1)求C的軌跡方程;

2)過點(diǎn)的直線l與曲線C交于MN兩點(diǎn),且Q恰好為線段的中點(diǎn),求直線l的方程.

【答案】12.

【解析】

1)根據(jù)條件,結(jié)合雙曲線定義即可求得雙曲線的標(biāo)準(zhǔn)方程.

2)當(dāng)斜率不存在時,不符合題意;當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立雙曲線,變形后由中點(diǎn)坐標(biāo)公式可求得斜率,即可求得直線方程.

1)動點(diǎn)P到兩點(diǎn)的距離之差的絕對值等于,且,

設(shè),則

根據(jù)雙曲線定義可知動點(diǎn)P的軌跡C為雙曲線,

焦點(diǎn)在軸上,且,所以

則雙曲線的標(biāo)準(zhǔn)方程為C.

2)過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn),且Q恰好為線段的中點(diǎn),

當(dāng)直線斜率不存在時,直線方程為,則由雙曲線對稱性可知線段的中點(diǎn)在軸上,所以不滿足題意;

當(dāng)斜率存在時,設(shè)直線方程為,設(shè)

,化簡可得,

因?yàn)橛袃蓚交點(diǎn),所以

化簡可得恒成立,

所以

因?yàn)?/span>恰好為線段的中點(diǎn),則

化簡可得

所以直線方程為,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中,來自東部地區(qū)的學(xué)生有2400人、中部地區(qū)學(xué)生有1600人、西部地區(qū)學(xué)生有1000人.從中選取100人作樣本調(diào)研飲食習(xí)慣,為保證調(diào)研結(jié)果相對準(zhǔn)確,下列判斷正確的有( )

①用分層抽樣的方法分別抽取東部地區(qū)學(xué)生48人、中部地區(qū)學(xué)生32人、西部地區(qū)學(xué)生20人;

②用簡單隨機(jī)抽樣的方法從新生中選出100人;

③西部地區(qū)學(xué)生小劉被選中的概率為;

④中部地區(qū)學(xué)生小張被選中的概率為

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試判斷函數(shù)上的單調(diào)性,并說明理由;

2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點(diǎn).

(Ⅰ)求證:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),點(diǎn)關(guān)于直線對稱的點(diǎn)Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點(diǎn),且,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.

(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計(jì)

學(xué)習(xí)大學(xué)先修課程

250

沒有學(xué)習(xí)大學(xué)先修課程

總計(jì)

150

(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某設(shè)計(jì)部門承接一產(chǎn)品包裝盒的設(shè)計(jì)(如圖所示),客戶除了要求、邊的長分別為外,還特別要求包裝盒必需滿足:平面平面;平面與平面所成的二面角不小于;包裝盒的體積盡可能大.

若設(shè)計(jì)部門設(shè)計(jì)出的樣品滿足:均為直角且,矩形的一邊長為,請你判斷該包裝盒的設(shè)計(jì)是否能符合客戶的要求?說明理由.

查看答案和解析>>

同步練習(xí)冊答案