【題目】在平面直角坐標(biāo)系中,動點(diǎn)P到兩點(diǎn)、的距離之差的絕對值等于.設(shè)點(diǎn)P的軌跡為C.
(1)求C的軌跡方程;
(2)過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn),且Q恰好為線段的中點(diǎn),求直線l的方程.
【答案】(1)(2).
【解析】
(1)根據(jù)條件,結(jié)合雙曲線定義即可求得雙曲線的標(biāo)準(zhǔn)方程.
(2)當(dāng)斜率不存在時,不符合題意;當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立雙曲線,變形后由中點(diǎn)坐標(biāo)公式可求得斜率,即可求得直線方程.
(1)動點(diǎn)P到兩點(diǎn)的距離之差的絕對值等于,且,
設(shè),則,
根據(jù)雙曲線定義可知動點(diǎn)P的軌跡C為雙曲線,
焦點(diǎn)在軸上,且,所以,
則雙曲線的標(biāo)準(zhǔn)方程為C:.
(2)過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn),且Q恰好為線段的中點(diǎn),
當(dāng)直線斜率不存在時,直線方程為,則由雙曲線對稱性可知線段的中點(diǎn)在軸上,所以不滿足題意;
當(dāng)斜率存在時,設(shè)直線方程為,設(shè),
則,化簡可得,
因?yàn)橛袃蓚交點(diǎn),所以
化簡可得恒成立,
所以,
因?yàn)?/span>恰好為線段的中點(diǎn),則,
化簡可得,
所以直線方程為,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中,來自東部地區(qū)的學(xué)生有2400人、中部地區(qū)學(xué)生有1600人、西部地區(qū)學(xué)生有1000人.從中選取100人作樣本調(diào)研飲食習(xí)慣,為保證調(diào)研結(jié)果相對準(zhǔn)確,下列判斷正確的有( )
①用分層抽樣的方法分別抽取東部地區(qū)學(xué)生48人、中部地區(qū)學(xué)生32人、西部地區(qū)學(xué)生20人;
②用簡單隨機(jī)抽樣的方法從新生中選出100人;
③西部地區(qū)學(xué)生小劉被選中的概率為;
④中部地區(qū)學(xué)生小張被選中的概率為
A. ①④ B. ①③ C. ②④ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)在上的單調(diào)性,并說明理由;
(2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別為橢圓的左、右焦點(diǎn),點(diǎn)關(guān)于直線對稱的點(diǎn)Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點(diǎn),且,則___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計(jì) | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,.
(1)證明:平面平面.
(2)若平面,二面角為,三棱錐的外接球的球心為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
討論函數(shù)的單調(diào)性;
設(shè),對任意的恒成立,求整數(shù)的最大值;
求證:當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某設(shè)計(jì)部門承接一產(chǎn)品包裝盒的設(shè)計(jì)(如圖所示),客戶除了要求、邊的長分別為和外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大.
若設(shè)計(jì)部門設(shè)計(jì)出的樣品滿足:與均為直角且長,矩形的一邊長為,請你判斷該包裝盒的設(shè)計(jì)是否能符合客戶的要求?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com