【題目】已知函數(shù), .

(1)求函數(shù)y=f(x)圖象的對(duì)稱(chēng)軸方程;

(2)求函數(shù)h(x)=f(x)+g(x)的最小正周期和值域.

【答案】(1);(2)

【解析】試題分析:(1)先利用二倍角公式進(jìn)行降次升角,再利用三角函數(shù)的性質(zhì)進(jìn)行求解;(2)先利用兩角和的余弦公式和配角公式化簡(jiǎn)表達(dá)式,再利用三角函數(shù)的性質(zhì)進(jìn)行求解.

試題解析:(1)由題設(shè)知f(x)= [1+cos(2x+)].

令2x+=kπ(k∈Z),得x= (k∈Z),

所以函數(shù)y=f(x)圖象的對(duì)稱(chēng)軸方程為x= (k∈Z)

(2)h(x)=f(x)+g(x)= [1+cos(2x+)]+1+sin2x

[cos(2x+)+sin2x]+ (cos2x+sin2x)+sin(2x+)+.

所以函數(shù)h(x)的最小正周期T=π,值域?yàn)閇1,2].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)(x∈D),若x∈D時(shí),均有f′(x)<f(x)成立,則稱(chēng)函數(shù)f(x)是J函數(shù).

(Ⅰ)當(dāng)函數(shù)f(x)=x2+m(ex+x),x≥e是J函數(shù)時(shí),求實(shí)數(shù)m的取值范圍;

(Ⅱ)若函數(shù)g(x)為R上的J函數(shù),試比較g(a)與ea-1g(1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有成立.記

求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856261)

某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(Ⅰ)下表是年齡的頻率分布表,求正整數(shù)a,b的值;

(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組抽取的員工的人數(shù)分別是多少?

(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)yx+ln x在點(diǎn)(1,1)處的切線(xiàn)與曲線(xiàn)yax2+(a+2)x+1相切,則a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)(2xb)ex,F(x)bxln x,bR.

(1)b<0,且存在區(qū)間M,使f(x)F(x)在區(qū)間M上具有相同的單調(diào)性,求實(shí)數(shù)b的取值范圍;

(2)F(x1)>b對(duì)任意x(0,+)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線(xiàn)的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(xiàn)(直線(xiàn)的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856311)[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線(xiàn)C1 (α為參數(shù))與曲線(xiàn)C2ρ=4sin θ(θ為參數(shù)).

(Ⅰ)寫(xiě)出曲線(xiàn)C1的普通方程和曲線(xiàn)C2的直角坐標(biāo)方程;

(Ⅱ)求C1C2公共弦的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案