(本小題滿分12分)已知函數(shù)為常數(shù))。
(Ⅰ)函數(shù)的圖象在點()處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(Ⅱ)設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實數(shù)的取值范圍;
(Ⅲ)若,對于區(qū)間[1,2]內(nèi)的任意兩個不相等的實數(shù),,都有
成立,求的取值范圍。

(Ⅰ)(Ⅱ)(Ⅲ)

解析試題分析:(Ⅰ)因為,所以,因此,
所以函數(shù)的圖象在點()處的切線方程為,               ……1分
,
,得.                                    ……3分
(Ⅱ)因為,
所以,
由題意知上有解,
因為,設(shè),因為,
則只要,解得
所以b的取值范圍是.                                              ……6分
(Ⅲ)不妨設(shè),
因為函數(shù)在區(qū)間[1,2]上是增函數(shù),所以,
函數(shù)圖象的對稱軸為,且。
(i)當(dāng)時,函數(shù)在區(qū)間[1,2]上是減函數(shù),所以,
所以等價于
,
,
等價于在區(qū)間[1,2]上是增函數(shù),
等價于在區(qū)間[1,2]上恒成立,
等價于在區(qū)間[1,2]上恒成立,
所以,又
所以.                                                             ……8分
(ii)當(dāng)時,函數(shù)在區(qū)間[1, b]上是減函數(shù),在上為增函數(shù)。
① 當(dāng)時,
等價于,
等價于在區(qū)間[1,b]上是增函數(shù),
等價于在區(qū)間[1,b]上恒成立,
等價于在區(qū)間[1,b]上恒成立,
所以,又,所以
②當(dāng)時,
等價于,
等價于在區(qū)間[b,2]上是增函數(shù),[來源:Z*xx*k.Com]
等價于在區(qū)間[b,2]上恒成立,
等價于在區(qū)間[b,2]上恒成立,
所以,故,
③當(dāng)時,
圖像的對稱性知,
只要

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若,求的單調(diào)區(qū)間;
(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
定義在上的函數(shù)滿足,且當(dāng)時,,
(1)求上的表達式;
(2)若,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)對任意實數(shù)都滿足
(Ⅰ)求的表達式;
(Ⅱ)設(shè)求證:上為減函數(shù);
(Ⅲ)在(Ⅱ)的條件下,證明:對任意,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12)
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域內(nèi)修建一個矩形的草坪,并建立如圖平面直角坐標(biāo)系,且,,另外的內(nèi)部有一文物保護區(qū)不能占用,經(jīng)測量, ,.
(1)求直線的方程;
(2)應(yīng)如何設(shè)計才能使草坪的占地面積最大?并求最大面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分12分)
(1)若 log2 [log (log2 x)]=0,求x。;
(2)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知不等式的解集為,不等式的解集為。
(1)求;
(2)若不等式的解集為,求不等式的解集。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)為實數(shù),),若,且函數(shù)的值域為
(1)求的表達式;
(2)當(dāng)時,是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案