【題目】已知橢圓的焦距為分別為橢圓的左、右頂點,為橢圓上的兩點(異于),連結(jié),且斜率是斜率的倍.
(1)求橢圓的方程;
(2)證明:直線恒過定點.
【答案】(1);
(2)證明見解析.
【解析】
(1)根據(jù)題意列出方程組,解出方程組即可得橢圓方程;(2)連結(jié)設(shè),由橢圓的性質(zhì)可得出,故而可得,當(dāng)斜率不存在時,設(shè),解出,當(dāng)直線斜率存在時,設(shè),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理,可得出,得出與的關(guān)系,代入直線方程即可得定點.
(1)因為,所以,即橢圓的方程為
(2)連結(jié)設(shè)則
因為點在橢圓上,所以
因為,所以
當(dāng)斜率不存在時,設(shè),不妨設(shè)在軸上方,
因為,所以
(ii)當(dāng)斜率存在時,設(shè),
即,所以
因為
所以,即或
當(dāng)時,,恒過定點,當(dāng)斜率不存在亦符合:當(dāng),,過點與點重合,舍去.
所以直線恒過定點
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,點A是PB的中點,現(xiàn)沿AD將平面PAD折起,設(shè).
(1)當(dāng)為直角時,求異面直線PC與BD所成角的大小;
(2)當(dāng)為多少時,三棱錐的體積為?
(3)剪去梯形中的,留下長方形紙片,在BC邊上任取一點E,把紙片沿AE折成直二面角,問E點取何處時,使折起后兩個端點間的距離最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.
(1)求拋物線的方程;
(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線l與橢圓C:交于,兩個不同的點,O為坐標(biāo)原點.
若直線l過點,且原點到直線l的距離為,求直線l的方程;
若的面積,求證:和均為定值;
橢圓C上是否存在三點D、E、G,使得?若存在,判斷的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點為拋物線外一點,過點作拋物線的兩條切線,,切點分別為,.
(Ⅰ)若點為,求直線的方程;
(Ⅱ)若點為圓上的點,記兩切線,的斜率分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選做題)
A.[選修4-2:矩陣與變換](本小題滿分10分)
已知m,n∈R,向量是矩陣的屬于特征值3的一個特征向量,求矩陣M及另一個特征值.
B.[選修4-4:坐標(biāo)系與參數(shù)方程](本小題滿分10分)
在平面直角坐標(biāo)系xOy中,已知直線的參數(shù)方程為( t為參數(shù)),橢圓C的參數(shù)方程為.設(shè)直線與橢圓C交于A,B兩點,求線段AB的長.
C.[選修4-5:不等式選講](本小題滿分10分)
已知x,y,z均是正實數(shù),且求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程,并說明它為何種曲線;
(Ⅱ)設(shè)點的坐標(biāo)為,直線交曲線于,兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com