已知某公司生產(chǎn)品牌服裝的年固定成本為10萬元,每生產(chǎn)千件,須另投入2.7萬元,設(shè)該公司年內(nèi)共生產(chǎn)品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?

(1);(2)9.

解析試題分析:(1)年利潤=銷售總收入-總成本,所以,由于是分段函數(shù),所以也是分段函數(shù);(2)這是一個求分段函數(shù)最大值的問題,通常要先求出各段中的最大值,然后再比較這兩個值,其中較大的一個即為所求,在各段求最大值時,要根據(jù)函數(shù)特點,適當(dāng)選擇方法,如利用基本不不等式,配方,導(dǎo)數(shù)等.
試題解析:(1)由題意得

(2)①當(dāng)時,

 ,∴當(dāng)時,,則遞增;當(dāng)時,,則遞減;
∴當(dāng)時,取最大值萬元.
②當(dāng)時,
當(dāng)且僅當(dāng),即取最大值38.
綜上,當(dāng)年產(chǎn)量為9千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大.
考點:函數(shù)在實際問題中的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng),且時,求證: 
(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若的值域;
(Ⅱ)若存在實數(shù),當(dāng)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實數(shù),函數(shù)
(1)若,求的取值范圍;
(2)求的最小值;
(3)設(shè)函數(shù),直接寫出(不需給出演算步驟)不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的值域為集合的定義域為集合,其中。(1)當(dāng),求;(2)設(shè)全集為R,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費用為8萬元.設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及的表達(dá)式;
(2)隔熱層修建多厚時,總費用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域為[0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)數(shù),求g(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

同步練習(xí)冊答案