20.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且asinA+csinC-$\sqrt{2}$asinC=bsinB.則∠B=$\frac{π}{4}$.

分析 asinA+csinC-$\sqrt{2}$asinC=bsinB.由正弦定理可得:${a}^{2}+{c}^{2}-\sqrt{2}ac=^{2}$,再利用余弦定理即可得出.

解答 解:△ABC中,∵asinA+csinC-$\sqrt{2}$asinC=bsinB.
由正弦定理可得:${a}^{2}+{c}^{2}-\sqrt{2}ac=^{2}$,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{2}ac}{2ac}$=$\frac{\sqrt{2}}{2}$,
∵B∈(0,π),
∴$B=\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評 本題考查了正弦定理余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A=B={(x,y)|x,y∈R},f是A到B的一個映射,且滿足f:(x,y)→(xy,x-y),若集合B中的元素(a,b)在集合A中只有唯一的元素與之對應(yīng),則a,b應(yīng)滿足的關(guān)系式為( 。
A.b2-2a=0B.b2+4a=0C.b2+2a=0D.b2-4a=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{1}{\sqrt{x-{x}^{2}}}$的最小值為( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.指出函數(shù)f(x)=$\frac{{x}^{2}+4x+5}{{x}^{2}+4x+4}$的單調(diào)區(qū)間,并比較f(-π)與f(-$\frac{\sqrt{2}}{2}$)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(ax-b)ex(a≠0).
①若f(x)≥-b恒成立,求f(1)的值;
②f(x)在(a,+∞)是單調(diào)減函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.從混有4件次品的20件商品中抽取3件,已知有1件是次品,求3件都是次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|=5,向量$\overrightarrow{c}$-$\overrightarrow{a}$,$\overrightarrow{c}$-$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{c}$-$\overrightarrow{a}$|=2$\sqrt{3}$,則$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{c}$-$\overrightarrow$的夾角正弦值為$\frac{3}{5}$,|$\overrightarrow{c}$|=4+$\sqrt{3}$或$\sqrt{37-16\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.兩個變量y與x的回歸模型中,分別選擇了4個不同模型,計算出它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是( 。
A.模型1(相關(guān)指數(shù)2為0.97)B.模型2(相關(guān)指數(shù)R2為0.89)
C.模型3(相關(guān)指數(shù)R2為0.56 )D.模型4(相關(guān)指數(shù)R2為0.45)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)f(x)=exlnx-aex(a∈R),若f(x)在(0,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案