【題目】如圖,拋物線(xiàn)E:y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)lx軸的交點(diǎn)為A.點(diǎn)C在拋物線(xiàn)E上,以C為圓心, |CO| 為半徑作圓,設(shè)圓C與準(zhǔn)線(xiàn)l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圓C的半徑.

【答案】
(1)

【解答】拋物線(xiàn)y2=4x的準(zhǔn)線(xiàn)l的方程為x=-1,

由點(diǎn)C的縱坐標(biāo)為2,得點(diǎn)C的坐標(biāo)為(1,2),所以點(diǎn)C到準(zhǔn)線(xiàn)l的距離d=2,又|CO|= .所以 .


(2)

【解答】設(shè) ,則圓C的方程為 ,

x2- x+y2-2y0y=0.由x=-1,得y2-2y0y+1+ =0,

設(shè)M(-1,y1),N(-1,y2),則:

由|AF|2=|AM|·|AN|,得|y1y2|=4,

所以 +1=4,解得y0 ,此時(shí)Δ>0,

所以圓心C的坐標(biāo)為 ,

從而|CO|2= ,|CO|= ,即圓C的半徑為 .


【解析】垂徑定理求圓的弦長(zhǎng)MN,第 (2)問(wèn),先設(shè)C的坐標(biāo),寫(xiě)出圓方程,聯(lián)立方程,然后結(jié)合已知條件列式求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的奇函數(shù)的圖像是一條連續(xù)不斷的曲線(xiàn),當(dāng)時(shí),;當(dāng)時(shí),,且,則關(guān)于的不等式的解集為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+1)n=a0+a1(x-1)+a2(x-1)2+...+an(x-1)n ,(其中 ).
(1)求 a0 及Sn=a1+a2+...+an ;
(2)試比較 Sn 與(n-2)2n+2n2 的大小,并用數(shù)學(xué)歸納法給出證明過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)y=f(x)經(jīng)過(guò)點(diǎn)(2, ).
(1)試求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性并寫(xiě)出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線(xiàn)段BD的中點(diǎn),設(shè)點(diǎn)P在線(xiàn)段CC1上,直線(xiàn)OP與平面A1BD所成的角為α,則sinα的取值范圍是(

A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與直線(xiàn)y=-5交于Q點(diǎn).

(1)求點(diǎn)Q的坐標(biāo);
(2)當(dāng)P為拋物線(xiàn)上位于線(xiàn)段AB下方(含A、B)的動(dòng)點(diǎn)時(shí),求ΔOPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)E:y2=2px(p>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)K,過(guò)點(diǎn)K作圓C:(x﹣2)2+y2=1的兩條切線(xiàn),切點(diǎn)為M,N,|MN|=
(1)求拋物線(xiàn)E的方程
(2)設(shè)A、B是拋物線(xiàn)E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且 = (其中O為坐標(biāo)原點(diǎn))
①求證:直線(xiàn)AB必過(guò)定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo)
②過(guò)點(diǎn)Q作AB的垂線(xiàn)與拋物線(xiàn)交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 C 的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在 X 軸上,橢圓 C 上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(1)求橢圓 C 的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn) 與橢圓 C 相交于 A,B 兩點(diǎn)( A,B 不是左右頂點(diǎn)),且以 AB 為直徑的圖過(guò)橢圓 C 的右頂點(diǎn).求證:直線(xiàn) l 過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)的解集為,求不等式的解集;

(2)存在使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案