已知函數(shù),其中且m為常數(shù).
(1)試判斷當(dāng)時函數(shù)在區(qū)間上的單調(diào)性,并證明;
(2)設(shè)函數(shù)在處取得極值,求的值,并討論函數(shù)的單調(diào)性.
(1)在區(qū)間上為增函數(shù),證明見解析;(2),在上單調(diào)遞減,在單調(diào)遞增.
解析試題分析:(1)首先求導(dǎo)函數(shù),然后根據(jù)區(qū)間判斷的符號即可證明;(2)利用函數(shù)的極值點(diǎn)是導(dǎo)函數(shù)的零點(diǎn)通過建立方程可求得的值,然后再通過判斷的符號確定單調(diào)區(qū)間.
(1)當(dāng)時,,求導(dǎo)數(shù)得:.
∵當(dāng)時,,∴ ,
∴當(dāng)時函數(shù)在區(qū)間上為增函數(shù).
(2)求導(dǎo)數(shù)得:.
由是的極值點(diǎn)得,∴.
于是,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/0/2xxs42.png" style="vertical-align:middle;" />,,
顯然函數(shù)在上單調(diào)遞增,且,
因此當(dāng)時,;時,,
所以在上單調(diào)遞減,在單調(diào)遞增.
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系;3、利用導(dǎo)數(shù)研究函數(shù)的極值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•浙江)設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)若x=e為y=f(x)的極值點(diǎn),求實(shí)數(shù)a;
(2)求實(shí)數(shù)a的取值范圍,使得對任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)當(dāng)a=2時,求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、、在公共定義域D上,滿足<<,那么就稱為、的“伴隨函數(shù)”.已知函數(shù),,若在區(qū)間(1,+∞)上,函數(shù)是、的“伴隨函數(shù)”,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè),當(dāng)時,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在內(nèi)單調(diào)遞增,求的取值范圍;
(2)若函數(shù)在處取得極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量 (單位:千克)與銷售價格 (單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中,為自然對數(shù)的底數(shù).
(1)若在處的切線與直線垂直,求的值;
(2)求在上的最小值;
(3)試探究能否存在區(qū)間,使得和在區(qū)間上具有相同的單調(diào)性?若能存在,說明區(qū)間的特點(diǎn),并指出和在區(qū)間上的單調(diào)性;若不能存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).當(dāng)時,函數(shù)取得極值.
(1)求函數(shù)的解析式;
(2)若方程有3個解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com