如圖,在長方體ABCD-A′B′C′D′中,AB=6,AA′=BC=4,則A′D與BC所成的角等于( 。
A、30°B、45°
C、60°D、90°
考點:異面直線及其所成的角
專題:空間角
分析:由BC∥AD,知∠A′DA是A′D與BC所成的角,由此能求出A′D與BC所成的角.
解答: 解:∵BC∥AD,
∴∠A′DA是A′D與BC所成的角,
∵AB=6,AA′=BC=4,
∴AA′=AD=4,又AA′⊥AD,
∴∠A′DA=45°.
∴A′D與BC所成的角為45°.
故選:B.
點評:本題考查空間點、線、面的位置關系及學生的空間想象能力、求異面直線角的能力.在立體幾何中找平行線是解決問題的一個重要技巧,這個技巧就是通過三角形的中位線找平行線,如果試題的已知中涉及到多個中點,則找中點是出現(xiàn)平行線的關鍵技巧.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知△OAB中,點C是點B關于A的對稱點,點D是線段OB的一個靠近B的三等分點,DC和OA交于E,設
AB
=a,
AO
=b
(1)用向量
a
b
表示向量
OC
,
CD
;
(2)若
OE
=λ
OA
,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},{bn}各項均為正數(shù),且對任意n∈N*,都有an,bn,a n+1成等差數(shù)列,bn,a n+1,b n+1成等比數(shù)列,且a1=10,a2=15,求證:{
bn
}為等差數(shù)列并求出{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=ln
1+x2
1-x2
的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體AC′的棱長為a.
(1)寫出與AC平行的面對角線;
(2)寫出與AC異面的面對角線;
(3)求直線AC與B′D′所成的角;
(4)求直線BA′和CC′所成的角;
(5)求直線BA′與B′C所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)x,y,z 滿足x2+y2+z2=1,則
2
xy+yz的最大值是為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的兩頂點A(3,7),B(-2,5),若AC的中點在y軸上,BC的中點在x軸上
(1)求點C的坐標;
(2)求AC邊上的中線BD的長及直線BD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,角A、B、C的對邊分別為a、b、c,已知c=2,向量
m
=(c,
3
b),
n
=(cosC,sinB),且
m
n

(1)求角C的大小;
(2)若sin(A+B),sin2A,sin(B-A)成等差數(shù)列,求邊a的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a2a10=9,則a5+a7(  )
A、有最小值6
B、有最大值6
C、有最小值6或最大值-6
D、有最大值-6

查看答案和解析>>

同步練習冊答案