【題目】四名同學根據各自的樣本數據研究變量之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:( )
①與負相關且. ②與負相關且
③與正相關且 ④與正相關且
其中正確的結論的序號是( )
A. ①② B. ②③ C. ①④ D. ③④
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1﹣ (a>0且a≠1)是定義在R上的奇函數.
(1)求a的值;
(2)求f(x)的值域;
(3)若關于x的方程|f(x)(2x+1)|=m有1個實根,求實數m的取值范圍;
(4)當x∈(0,1]時,tf(x)≥2x﹣2恒成立,求實數t取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內的總濃度. 藥物在人體內發(fā)揮治療作用時,該藥物的血藥濃度應介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內血藥濃度及相關信息如圖所示:
根據圖中提供的信息,下列關于成人使用該藥物的說法中,不正確的是
A. 首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
B. 每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產生藥物中毒
C. 每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
D. 首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形, ∥, , ,四邊形為正方形,平面平面.
(Ⅰ)若點是棱的中點,求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產品的研發(fā)投入,已知研發(fā)投入 (十萬元)與利潤 (百萬元)之間有如下對應數據:
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由資料知對呈線性相關關系。試求:
(1)線性回歸方程;
(2)估計時,利潤是多少?
附:利用“最小二乘法”計算a,b的值時,可根據以下公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= .
(1)判斷函數f(x)在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論;
(2)求函數f(x)在區(qū)間[2,4]上的最大值與最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com