若m>1,在約束條件
x-y≤0
mx-y≥0
x+y-1≤0
下,目標(biāo)函數(shù)z=x+my的最大值小于2,則m的取值范圍是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:根據(jù)m>1,我們可以判斷直線y=mx的傾斜角位于區(qū)間(
π
4
π
2
)上,由此我們不難判斷出滿(mǎn)足約束條件
x-y≤0
mx-y≥0
x+y-1≤0
的平面區(qū)域的形狀,再根據(jù)目標(biāo)函數(shù)Z=X+my對(duì)應(yīng)的直線與直線y=mx垂直,且在直線y=mx與直線x+y=1交點(diǎn)處取得最大值,由此構(gòu)造出關(guān)于m的不等式組,解不等式組即可求出m 的取值范圍.
解答: 解:∵m>1
故直線y=mx與直線x+y=1交于(
1
m+1
,
m
m+1
)點(diǎn),
目標(biāo)函數(shù)Z=X+my對(duì)應(yīng)的直線與直線y=mx垂直,且在(
1
m+1
,
m
m+1
)點(diǎn),取得最大值,
其關(guān)系如下圖所示:

1+m2
m+1
<2,
又∵m>1,
解得m∈(1,1+
2
).
故答案為:(1,1+
2
)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線性規(guī)劃的應(yīng)用,其中根據(jù)平面直線方程判斷出目標(biāo)函數(shù)Z=X+my對(duì)應(yīng)的直線與直線y=mx垂直,且在(
1
m+1
,
m
m+1
)點(diǎn)取得最大值,并由此構(gòu)造出關(guān)于m的不等式組是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)滿(mǎn)足x2+y2小于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,多面體ABCPQ中,PA⊥平面ABC,PA=AB,△ABC是等腰直角三角形,∠BAC=90°,△QBC是等邊三角形,M是BC的中點(diǎn),二面角Q-BC-A的正切值為-
2

(Ⅰ)證明:PQ∥平面ABC;
(Ⅱ)在線段QM上是否存在一點(diǎn)N,使得PN⊥平面QBC,如果存在,請(qǐng)求出N點(diǎn)的位置,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α、β均為銳角,sinα=
5
13
,cosβ=
4
5
,則sin(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把一枚硬幣任意拋擲兩次,事件A為:“第一次出現(xiàn)反面”,事件B為“第二次出現(xiàn)正面”,則P(B|A)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|x3-3x-t|(x∈[-2,2])的最大值為
5
2
,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,∠BAA1=∠DAA1=60°,則AC1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)>0(n∈N*),f(2)=4,并且對(duì)于任意n1,n2∈N*,f(n1+n2)=f(n1)f(n2)成立,猜想f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3,3),|
b
|=6,
a
⊥(
a
-
b
),則向量
a
b
的夾角大小為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案