滿足方程的點(diǎn)z的軌跡是

[    ]

A.直線    B.圓       C.橢圓      D.雙曲線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Z=cos
π
4
+isin
π
4
,i為虛數(shù)單位,那么平面內(nèi)到點(diǎn)C(1,2)的距離等于|Z|的點(diǎn)的軌跡是( 。
A、圓
B、以點(diǎn)C為圓心,半徑等于1的圓
C、滿足方程x2+y2=1的曲線
D、滿足(x-1)2+(y-2)2=
1
2
的曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是復(fù)平面內(nèi)的三角形,A、B兩點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別為1+3i和-i,且AC=BC,
(1)求△ABC的頂點(diǎn)C的軌跡方程.
(2)若復(fù)數(shù)z滿足|z-5i|=1,探究復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)Z的軌跡與頂點(diǎn)C的軌跡的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=x+yi(x,y∈R)滿足|z-1|=x,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)Z(x,y)的軌跡方程為
y2=2x-1(x≥0)
y2=2x-1(x≥0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)和平面解析幾何的觀點(diǎn)相同,在空間中,空間曲面可以看作是適合某種條件的動(dòng)點(diǎn)的軌跡.在空間直角坐標(biāo)系O-xyz中,空間曲面的方程是一個(gè)三元方程F(x,y,z)=0.
設(shè)F1、F2為空間中的兩個(gè)定點(diǎn),|F1F2|=2c>0,我們將曲面Γ定義為滿足|PF1|+|PF2|=2a(a>c)的動(dòng)點(diǎn)P的軌跡.
(1)試建立一個(gè)適當(dāng)?shù)目臻g直角坐標(biāo)系O-xyz,求曲面Γ的方程;
(2)指出和證明曲面Γ的對(duì)稱性,并畫出曲面Γ的直觀圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案