已知橢圓的兩焦點(diǎn)F1、F2和短軸的兩端點(diǎn)B1、B2正好是一正方形的四個(gè)頂點(diǎn),且焦點(diǎn)到橢圓上一點(diǎn)的最近距離為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上任一點(diǎn),MN是圓C:x2+(y-2)2=1的任一條直徑,求的最大值.
【答案】分析:(1)由題意知可求得a,c和b的值,進(jìn)而橢圓的方程可得.
(2)根據(jù)從而只需求出的最大值,設(shè)P(x,y)代入橢圓方程可得x和y,的關(guān)系式,再根據(jù)C點(diǎn)坐標(biāo)求得關(guān)于y的關(guān)系式,進(jìn)而根據(jù)的范圍求得的范圍,進(jìn)而求得的最大值.
解答:解:(1)由題意知
故橢圓的標(biāo)準(zhǔn)方程為
(2)=
從而只需求出的最大值
設(shè)P(x,y),
則有,
即有x2=2-2y2,又C(0,2),
所以,
而y∈[-1,1],
所以y=-1時(shí),最大值為9,
的最大值為8.
點(diǎn)評(píng):本題主要考查了橢圓的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩焦點(diǎn)為F1(-2,0),F(xiàn)2(2,0),P為橢圓上一點(diǎn),且|F1F2|是|PF1|與|PF2|的等差中項(xiàng).
(1)求此橢圓方程;
(2)若點(diǎn)滿足∠F1PF2=120°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩焦點(diǎn)F1(-1,0)、F2(1,0),P是橢圓上一點(diǎn)且|F1F2|是|PF1|與|PF2|的等差中項(xiàng),則此橢圓的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
x2
4
+
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:張家港市后塍高級(jí)中學(xué)2007~2008第一學(xué)期高三數(shù)學(xué)十二月調(diào)研測(cè)試卷 題型:044

已知橢圓的兩焦點(diǎn)F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.

(1)求橢圓的方程

(2)設(shè)點(diǎn)P在橢圓上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省西安市西工大附中高考數(shù)學(xué)七模試卷(理科)(解析版) 題型:解答題

已知橢圓的兩焦點(diǎn)F1、F2和短軸的兩端點(diǎn)B1、B2正好是一正方形的四個(gè)頂點(diǎn),且焦點(diǎn)到橢圓上一點(diǎn)的最近距離為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上任一點(diǎn),MN是圓C:x2+(y-2)2=1的任一條直徑,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案