【題目】在△ABC中,內角A,B,C所對的邊分別是a,b,c,已知A=,b2-a2=c2.
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
【答案】(1)tanC=2,(2)b=3.
【解析】
(1)先根據(jù)正弦定理化邊為角,再根據(jù)二倍角余弦公式以及三角形內角關系化為關于C角的方程,解得tanC的值;(2)先根據(jù)三角形面積公式得bc的值,再根據(jù)同角三角函數(shù)關系得sinC,由誘導公式可得sinB,再根據(jù)正弦定理可得b,c關系,解方程組可得b的值.
(1)由b2-a2=c2及正弦定理得sin2B-=sin2C.所以-cos2B=sin2C.①
又由A=,即B+C=π,
得-cos2B=-cos2=-cos=sin2C=2sinCcosC,②
由①②解得tanC=2.
(2)由tanC=2,C∈(0,π)得sinC=,cosC=,因為sinB=sin(A+C)=sin,
所以sinB=,由正弦定理得c=b,又因為A=, bcsinA=3,
所以bc=6,故b=3.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構成,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)寫出曲線C的極坐標方程;
(2)已知射線與曲線C交于點M,點N為曲線C上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學生進行調查.
(1)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的100名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),如表是根據(jù)調查結果得到的列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;
(2)在抽取到的女生中按(1)中的選課情況進行分層抽樣,從中抽出9名女生,再從這9名女生中隨機抽取4人,設這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學期望.
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 25 | ||
總計 |
附參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,為山腳兩側共線的3點,在山頂處測得3點的俯角分別為,計劃沿直線開通穿山隧道,為求出隧道的長度,你認為還需要直接測量出中哪些線段的長度?根據(jù)條件,并把你認為需要測量的線段長度作為已知量,寫出計算隧道長度的運算步驟.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形中,分別是的中點將分別沿折起,使重合于點.則下列結論正確的是( )
A.
B. 平面
C. 二面角的余弦值為
D. 點在平面上的投影是的外心
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )
A. 3寸B. 4寸C. 5寸D. 6寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)求函數(shù)的對稱軸方程;
(3)當時,方程有兩個不同的實根,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間幾何體中,與均為邊長為2的等邊三角形,為腰長為3的等腰三角形,平面平面,平面平面分別為的中點.
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com