已知兩點(diǎn)分別為B(2,1),C(-2,3).
(1)求直線BC的方程;
(2)求線段BC的垂直平分線的方程.
分析:(1)利用B和C的坐標(biāo),根據(jù)直線方程的兩點(diǎn)式直接求出直線方程即可;
(2)根據(jù)中點(diǎn)坐標(biāo)公式求出B與C的中點(diǎn)D的坐標(biāo),求出直線BC的斜率,然后根據(jù)兩直線垂直時(shí)斜率乘積為-1求出BC垂直平分線的斜率,由D的坐標(biāo),寫(xiě)出線段BC的垂直平分線的方程即可.
解答:解:(1)因?yàn)橹本BC經(jīng)過(guò)B(2,1)和C(-2,3)兩點(diǎn),
由兩點(diǎn)式得BC的方程為y-1=
3-1
-2-2
(x-2),即x+2y-4=0.
(2)設(shè)BC中點(diǎn)D的坐標(biāo)為(x,y),則x=
2-2
2
=0,y=
1+3
2
=2.
BC的斜率k1=-
1
2
,則BC的垂直平分線DE的斜率k2=2,
由斜截式得直線DE的方程為y=2x+2.
點(diǎn)評(píng):考查學(xué)生會(huì)根據(jù)一點(diǎn)和斜率或兩點(diǎn)坐標(biāo)寫(xiě)出直線的方程,掌握兩直線垂直時(shí)斜率的關(guān)系.會(huì)利用中點(diǎn)坐標(biāo)公式求線段的中點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A、B分別在直線y=x和y=-x上運(yùn)動(dòng),且|AB|=
4
5
5
,動(dòng)點(diǎn)P滿足2
OP
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C.
(1)求曲線C的方程;
(2)過(guò)曲線C上任意一點(diǎn)作它的切線l,與橢圓
x2
4
+y2=1
交于M、N兩點(diǎn),求證:
OM
ON
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4   坐標(biāo)系與參數(shù)方程
已知兩點(diǎn)A、B的極坐標(biāo)分別為(4,
π
2
)
,(4,
π
6
)

(Ⅰ)求A、B兩點(diǎn)間的距離;
(Ⅱ)以極坐標(biāo)系的極點(diǎn)O為直角坐標(biāo)系的原點(diǎn),極軸為x軸的非負(fù)半軸,建立平面直角坐標(biāo)系,求直線AB的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩點(diǎn)分別為B(2,1),C(-2,3).
(1)求直線BC的方程;
(2)求線段BC的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省大慶中學(xué)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知兩點(diǎn)分別為B(2,1),C(-2,3).
(1)求直線BC的方程;
(2)求線段BC的垂直平分線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案