【題目】近幾年,我國(guó)鮮切花產(chǎn)業(yè)得到了快速發(fā)展,相關(guān)部門制定了鮮切花產(chǎn)品行業(yè)等級(jí)標(biāo)準(zhǔn),統(tǒng)一使用綜合指標(biāo)值進(jìn)行衡量,如下表所示.某花卉生產(chǎn)基地準(zhǔn)備購(gòu)進(jìn)一套新型的生產(chǎn)線,現(xiàn)進(jìn)行設(shè)備試用,分別從新舊兩條生產(chǎn)線加工的產(chǎn)品中選取30個(gè)樣品進(jìn)行等級(jí)評(píng)定,整理成如圖所示的莖葉圖.

綜合指標(biāo)

質(zhì)量等級(jí)

三級(jí)

二級(jí)

一級(jí)

)根據(jù)莖葉圖比較兩條生產(chǎn)線加工的產(chǎn)品的綜合指標(biāo)值的平均值及分散程度(直接給出結(jié)論即可);

)若從等級(jí)為三級(jí)的樣品中隨機(jī)選取3個(gè)進(jìn)行生產(chǎn)流程調(diào)查,其中來(lái)自新型生產(chǎn)線的樣品個(gè)數(shù)為,求的分布列;

)根據(jù)該花卉生產(chǎn)基地的生產(chǎn)記錄,原有生產(chǎn)線加工的產(chǎn)品的單件平均利潤(rùn)為4元,產(chǎn)品的銷售率(某等級(jí)產(chǎn)品的銷量與產(chǎn)量的比值)及產(chǎn)品售價(jià)如下表:

三級(jí)花

二級(jí)花

一級(jí)花

銷售率

單件售價(jià)

12

16

20

預(yù)計(jì)該新型生產(chǎn)線加工的鮮切花單件產(chǎn)品的成本為10元,日產(chǎn)量3000.因?yàn)轷r切花產(chǎn)品的保鮮特點(diǎn),未售出的產(chǎn)品統(tǒng)一按原售價(jià)的50%全部處理完.如果僅從單件產(chǎn)品利潤(rùn)的角度考慮,該生產(chǎn)基地是否需要引進(jìn)該新型生產(chǎn)線?

【答案】I)新型生產(chǎn)線綜合指標(biāo)值的平均值高于舊生產(chǎn)線的平均值,舊生產(chǎn)線的綜合指標(biāo)值相對(duì)來(lái)說(shuō)更為集中;

II

X

0

1

2

3

P

III)該生產(chǎn)基地需要引進(jìn)該新型生產(chǎn)線.

【解析】

I)由莖葉圖得新型生產(chǎn)線綜合指標(biāo)值的平均值高于舊生產(chǎn)線的平均值,舊生產(chǎn)線的綜合指標(biāo)值相對(duì)來(lái)說(shuō)更為集中;

II)由題意得等級(jí)為三級(jí)的樣品共有8個(gè),其中來(lái)自舊生產(chǎn)線的5個(gè),新生產(chǎn)線的3個(gè),隨機(jī)變量X的取值為01,23,分別求出相應(yīng)的概率,由此能求出X的分布列;

)由莖葉圖知該新型生產(chǎn)線加工的產(chǎn)品為三等品的概率為,二等品的概率為,一等品的概率30000件產(chǎn)品中,三等品、二等品、一等品的件數(shù)的估計(jì)值分別為300件,1600件,1100件,求出單件產(chǎn)品利潤(rùn),得到該生產(chǎn)基地需要引進(jìn)新型生產(chǎn)線.

)由莖葉圖可以看出,新型生產(chǎn)線綜合指標(biāo)值的平均值高于舊生產(chǎn)線的平均值;生產(chǎn)線的綜合指標(biāo)值相對(duì)于新型生產(chǎn)線來(lái)說(shuō)更為集中.

II)由題意可知,等級(jí)為三級(jí)的樣品共有8個(gè),其中來(lái)自舊生產(chǎn)線的5個(gè),新生產(chǎn)線的3個(gè),隨機(jī)變量的取值為01,2,3,

,

的分布列為

0

1

2

3

)由莖葉圖可知,該新型生產(chǎn)線加工的產(chǎn)品為三等品的概率

二等品的概率,一等品的概率

3000件產(chǎn)品中,三等品、二等品、一等品的件數(shù)的估計(jì)值分別為300件,1600件,1100件,

三等品日銷售總利潤(rùn)為(元),

二等品日銷售總利潤(rùn)為(元),

一等品日銷售總利潤(rùn)為(元),

(元).

故產(chǎn)品的單件平均利潤(rùn)的估計(jì)值為4.88元,高于4元,

綜上,該生產(chǎn)基地需要引進(jìn)該新型生產(chǎn)線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】馬林梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)為圓上一動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸,軸的垂線,垂足分別為,,連接延長(zhǎng)至點(diǎn),使得,點(diǎn)的軌跡記為曲線.

1)求曲線的方程;

2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,試問(wèn)在曲線上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間為函數(shù)的一個(gè)可等域區(qū)間.給出下列4個(gè)函數(shù):

;;

其中存在唯一可等域區(qū)間可等域函數(shù)為( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,,的中點(diǎn).

(Ⅰ)證明:∥平面

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),滿足.設(shè)上任一點(diǎn),過(guò)的切線,其斜率滿足

1)求函數(shù)的解析式;

2)若數(shù)列滿足.設(shè)為正常數(shù).

①求;

②若不等式對(duì)任意的恒成立,則實(shí)數(shù)是否存在最大值?若存在,請(qǐng)求出這個(gè)值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)經(jīng)過(guò)點(diǎn),離心率為,分別為橢圓的左、右焦點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若點(diǎn))在橢圓C上,求證;直線與直線關(guān)于直線l對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請(qǐng)問(wèn)各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問(wèn)羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案