【題目】如圖,四棱錐中,底面為直角梯形,,,,,的中點.

(Ⅰ)證明:∥平面

(Ⅱ)若,求直線與平面所成角的正弦值.

【答案】I)見解析;

II

【解析】

)取BC的中點G,連接FG,EG,證明四邊形EGCD為平行四邊形,得EG∥平面ACD,再證明FG∥平面ACD,可得平面EFG∥平面ACD,從而得到EF∥平面ACD

)求解三角形證明BAAE,取BE的中點H,連接AH,HC,證明AH⊥平面BCDE.以H為坐標原點,以過點H且平行于CD的直線為x軸,以過點H且平行于BC的直線為y軸,HA所在直線為z軸建立空間直角坐標系,求出平面ACD的一個法向量,再求出直線BC的方向向量,由兩向量所成角的余弦值可得直線BC與平面ACD所成角的正弦值.

解:證明:(I)作中點,連接,則,

,四邊形為平行四邊形,

,則平面,

的中點,,則平面,

,平面平面,

平面,

平面

II,,,

,則,

,,則,

中點,連接,

,,

,,即,

,平面.

為坐標原點,以過點且平行于的直線為軸,以過點且平行于的直線為軸,所在直線為軸,建立如圖所示的空間直角坐標系,

可得,,,

為平面的一個法向量,

可得,

直線的方向向量

與平面所成角為,

綜上,直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓臺O1O2的軸截面為等腰梯形A1A2B2B1,A1A2B1B2A1A22B1B2,A1B12,圓臺O1O2的側面積為6π.若點CD分別為圓O1,O2上的動點且點C,D在平面A1A2B2B1的同側.

1)求證:A1CA2C

2)若∠B1B2C60°,則當三棱錐CA1DA2的體積取最大值時,求A1D與平面CA1A2所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】端午節(jié)(每年農歷五月初五),是中國傳統(tǒng)節(jié)日,有吃粽子的習俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤元,未售出的粽子每kg虧損元.根據(jù)歷史資料,得到銷售情況與市場需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預購進了kg粽子.(單位:kg,)表示今年的市場需求量,(單位:元)表示今年的利潤.

市場需求量(kg

頻率

0.1

0.2

0.3

0.25

0.15

(1)將表示為的函數(shù);

(2)根據(jù)頻率分布表估計今年利潤不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于空間中的三條直線,有以下四個條件:①三條直線兩兩相交;②三條直線兩兩平行;③三條直線共點;④兩直線相交,第三條平行于其中一條與另一條相交.其中使這三條直線共面的充分條件有______(填正確結論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年,我國鮮切花產業(yè)得到了快速發(fā)展,相關部門制定了鮮切花產品行業(yè)等級標準,統(tǒng)一使用綜合指標值進行衡量,如下表所示.某花卉生產基地準備購進一套新型的生產線,現(xiàn)進行設備試用,分別從新舊兩條生產線加工的產品中選取30個樣品進行等級評定,整理成如圖所示的莖葉圖.

綜合指標

質量等級

三級

二級

一級

)根據(jù)莖葉圖比較兩條生產線加工的產品的綜合指標值的平均值及分散程度(直接給出結論即可);

)若從等級為三級的樣品中隨機選取3個進行生產流程調查,其中來自新型生產線的樣品個數(shù)為,求的分布列;

)根據(jù)該花卉生產基地的生產記錄,原有生產線加工的產品的單件平均利潤為4元,產品的銷售率(某等級產品的銷量與產量的比值)及產品售價如下表:

三級花

二級花

一級花

銷售率

單件售價

12

16

20

預計該新型生產線加工的鮮切花單件產品的成本為10元,日產量3000.因為鮮切花產品的保鮮特點,未售出的產品統(tǒng)一按原售價的50%全部處理完.如果僅從單件產品利潤的角度考慮,該生產基地是否需要引進該新型生產線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“金鑲玉”是北京奧運會的獎牌設計所采用的式樣,喻示中國傳統(tǒng)文化中的“金玉良緣”,體現(xiàn)了中國人對奧林匹克精神的禮贊和對運動員的褒獎.它的設計方案,創(chuàng)意十分新穎,突破了以往任何一屆奧運會獎牌設計單一材質的傳統(tǒng),又融入了典型的中國文化元素,是中國文化與體育精神完美結合的載體.現(xiàn)有一矩形玉片,毫米,32毫米,的中點.現(xiàn)要開槽鑲嵌金絲,將其加工為鑲金工藝品,如圖,金絲部分為優(yōu)弧和線段其中優(yōu)弧所在圓的圓心為,圓與矩形的邊分別相切于點以及點在線段上(的左側),分別于圓相切于點.若優(yōu)弧部分鑲嵌的金絲每毫米造價為元(),線段部分鑲嵌的金絲每毫米造價為元.記銳角鑲嵌金絲的總造價為元.

1)試表示出關于的函數(shù)并寫出的范圍;

2)當鑲嵌金絲的總造價最低時,求出四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知對數(shù)函數(shù)過定點(其中),函數(shù)(其中的導函數(shù),,為常數(shù))

1)討論的單調性;

2)若對恒成立,且)處的導數(shù)相等,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點.

(1)求證:

(2)求三棱錐的體積;

(3)探究在上是否存在點,使得平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與拋物線有共同的焦點,且離心率為,設分別是為橢圓的上下頂點

1)求橢圓的方程;

2)過點軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(含邊界)時,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習冊答案