【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1和直線C2的極坐標(biāo)方程;

(2)若直線C2與曲線C1交于A,B兩點(diǎn),求

【答案】(1)極坐標(biāo)方程為,(2) .

【解析】

試題(1)根據(jù)極坐標(biāo)和直角坐標(biāo)的互化公式得極坐標(biāo)方程為ρ2﹣4ρcosθ﹣4ρsinθ+7=0

直線C2的方程為y= ,極坐標(biāo)方程為 ;(2)直線C2與曲線C1聯(lián)立,可得ρ2﹣(2+2 )ρ+7=0,

(1)曲線C1的參數(shù)方程為 (α為參數(shù)),直角坐標(biāo)方程為(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,極坐標(biāo)方程為ρ2﹣4ρcosθ﹣4ρsinθ+7=0

直線C2的方程為y= ,極坐標(biāo)方程為 ;

(2)直線C2與曲線C1聯(lián)立,可得ρ2﹣(2+2 )ρ+7=0,

設(shè)A,B兩點(diǎn)對應(yīng)的極徑分別為ρ1,ρ2,則ρ12=2+2,ρ1ρ2=7,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)判斷的單調(diào)性,并證明之;

2)若存在實(shí)數(shù),,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐各棱所在的6條直線上,互相垂直的最多有兒對?(每兩條組成一對)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抑制房價過快上漲和過度炒作,各地政府響應(yīng)中央號召,因地制宜出臺了系列房價調(diào)控政策.某市為擬定出臺房產(chǎn)限購的年齡政策為了解人們對房產(chǎn)限購年齡政策的態(tài)度,對年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持房產(chǎn)限購的人數(shù)與年齡的統(tǒng)計結(jié)果如下:

年齡

支持的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為以44歲為分界點(diǎn)的不同人群對房產(chǎn)限購年齡政策的支持度有差異;

44歲以下

44歲及44歲以上

總計

支持

不支持

總計

2)若以44歲為分界點(diǎn),從不支持房產(chǎn)限購的人中按分層抽樣的方法抽取8人參加政策聽證會.現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是44歲以下時,求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個輪胎是標(biāo)準(zhǔn)輪胎.

(i)若從甲乙提供的個輪胎中隨機(jī)選取個,求所選的輪胎是標(biāo)準(zhǔn)輪胎的概率

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),函數(shù)

1)當(dāng)函數(shù)圖象與軸相切時,求實(shí)數(shù)的值;

2)若函數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時,討論函數(shù)在區(qū)間上的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動

不喜好體育運(yùn)動

男生

5

女生

10

已知按喜好體育運(yùn)動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動的人數(shù)為6

1)請將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯概率不超過0.01的前提下認(rèn)為喜好體育運(yùn)動與性別有關(guān)?說明你的理由;

3)在上述喜好體育運(yùn)動的6人中隨機(jī)抽取兩人,求恰好抽到一男一女的概率.

參考公式:

獨(dú)立性檢驗(yàn)臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里裝有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同

從盒子中隨機(jī)取出2個球,求取出的2個球顏色相同的概率.

從盒子中隨機(jī)取出4個球,其中紅球個數(shù)分別記為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某園林單位準(zhǔn)備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內(nèi)接正方形PQRS為一水池,其余的地方種花.,設(shè)的面積為,正方形PQRS的面積為.

1)用a,表示;

2)當(dāng)a為定值,變化時,求的最小值,及此時的.

查看答案和解析>>

同步練習(xí)冊答案