已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為( )
A.
B.
C.(1,2)
D.(1,-2)
【答案】分析:先判斷點Q與拋物線的位置,即點Q在拋物線內(nèi),再由點P到拋物線焦點距離等于點P到拋物線準線距離,根據(jù)圖象知最小值在S,P,Q三點共線時取得,可得到答案.
解答:解:點P到拋物線焦點距離等于點P到拋物線準線距離,如圖PF+PQ=PS+PQ,故最小值在S,P,Q三點共線時取得,此時P,Q的縱坐標都是-1,
故選A.
點評:本題主要考查拋物線的定義,即拋物線是到定點的距離等于定直線的距離的點的集合.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為( 。
A、(
1
4
,-1)
B、(
1
4
,1)
C、(1,2)
D、(1,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上,則點P到直線l1:4x-3y+6=0的距離和到直線l2:x=-1的距離之和的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和的最小值為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在拋物線y2=4x上運動,F(xiàn)為拋物線的焦點,點M的坐標為(3,2),當PM+PF取最小值時點P的坐標為
 

查看答案和解析>>

同步練習冊答案