設(shè)函數(shù)(其中).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當(dāng)時(shí),函數(shù)在上有且只有一個(gè)零點(diǎn).
(1)函數(shù)的遞減區(qū)間為遞增區(qū)間為極大值為,極小值為;(2)詳見(jiàn)試題解析.
解析試題分析:(1)先求,解方程,得可能的極值點(diǎn),列表可得函數(shù)的單調(diào)區(qū)間和極值;(2).當(dāng)時(shí),,在上無(wú)零點(diǎn),故只需證明函數(shù)在上有且只有一個(gè)零點(diǎn).分和利用函數(shù)的單調(diào)性證明函數(shù)在上有且只有一個(gè)零點(diǎn).
試題解析:(1)當(dāng)時(shí),,.
令,得,.
當(dāng)變化時(shí),的變化如下表:
由表可知,函數(shù)的遞減區(qū)間為極大值 極小值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(Ⅰ)當(dāng),時(shí),求的單調(diào)區(qū)間;
(2)當(dāng),且時(shí),求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a>0,函數(shù).
(1)若,求函數(shù)的極值,
(2)是否存在實(shí)數(shù),使得成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)
(Ⅰ)設(shè),求證:當(dāng)時(shí),;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù) 的最小值為.
(1)求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(Ⅰ)若在是增函數(shù),求b的取值范圍;
(Ⅱ)若在時(shí)取得極值,且時(shí),恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為實(shí)數(shù),函數(shù)
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)且時(shí),
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com