設(shè)f1(x)=cosx,定義fn+1(x)為fn(x)的導(dǎo)數(shù),即fn+1(x)=fn′(x),n∈N+,若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=0,則sinA的值是( 。
A、1
B、
3
2
C、
2
2
D、
1
2
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由已知分別求出f2(x),f3(x),f4(x),f5(x),得到從第五項(xiàng)開始,fn(x)的解析式重復(fù)出現(xiàn),每4次一循環(huán),再結(jié)合f1(A)+f2(A)+…+f2013(A)+f2014(A)=0得到cosA-sinA=0,則A可求.
解答: 解:∵f1(x)=cosx,
∴f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,
f4(x)=f3′(x)=sinx,
f5(x)=f4′(x)=cosx,

從第五項(xiàng)開始,fn(x)的解析式重復(fù)出現(xiàn),每4次一循環(huán).
∴f1(x)+f2(x)+f3(x)+f4(x)=0
∴f2013(x)=f4×503+1(x)=f1(x)=cosx,
f2014(x)=)=f4×503+2(x)=f2(x)=-sinx,
∵f1(A)+f2(A)+…+f2013(A)+f2014(A)=0,
∴cosA-sinA=0,
∵A為三角形的內(nèi)角
∴sinA=
2
2

故選:C.
點(diǎn)評:本題考查了導(dǎo)數(shù)的運(yùn)算,考查了基本初等函數(shù)的導(dǎo)數(shù)公式,關(guān)鍵是規(guī)律的發(fā)現(xiàn).是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知BC=7,AC=8,AB=9,試求AC邊上的中線長
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是夾角為60°的兩個(gè)單位向量,已知
OM
=
e1
ON
=
e2
,
OP
=x
e1
+y
e2
,若△PMN是以M為直角頂點(diǎn)的三角形,則x-y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
,an+1)(n∈N*)在函數(shù)y=2x2的圖象上.
(1)若數(shù)列{bn}滿足b1=1,bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式;
(2)在(1)的條件下,cn=n•log2bn,求{
1
cn+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+1,x≥1
ax2+x+1,x<1
,則“-
1
2
≤a≤0”是“f(x)在R上單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(λ,-3),
b
=(4,-2),若
a
b
,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市有10 000名學(xué)生,一次信息技術(shù)成績近似服從于正態(tài)分布N(70,100),如果規(guī)定不低于90分為優(yōu)秀,那么成績優(yōu)秀的學(xué)生約為
 
人.(參考數(shù)據(jù):P(μ-σ<X<μ+σ)=0.6828,P(μ-2σ<X<μ+2σ)=0.9544)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后由如下數(shù)據(jù)
 產(chǎn)量x(千件) 2 3 5 6
 成本y(萬元) 7 8 9 12
(1)畫出散點(diǎn)圖
(2)求成本y與x之間的線性回歸方程
(3)當(dāng)成本為15萬元時(shí),試估計(jì)產(chǎn)量為多少件?(保留兩位小數(shù))(
a
=
.
y
-
b
.
x
,
b
=
 i i-n
.
x
.
y
n
i-1
xi2-n(
.
x
)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時(shí),f(x)=0,則f(
23π
6
)=
 

查看答案和解析>>

同步練習(xí)冊答案