在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點A的極坐標(biāo)為(
2
,
π
4
),直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為
x=1+cosα
y=sinα
(α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
考點:參數(shù)方程化成普通方程,簡單曲線的極坐標(biāo)方程,直線的參數(shù)方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:(1)根據(jù)點A在直線l上,將點的極坐標(biāo)代入直線的極坐標(biāo)方程即可得出a值,再利用極坐標(biāo)轉(zhuǎn)化成直角坐標(biāo)的轉(zhuǎn)換公式求出直線l的直角坐標(biāo)方程;
(2)欲判斷直線l和圓C的位置關(guān)系,只需求圓心到直線的距離與半徑進行比較即可,根據(jù)點到線的距離公式求出圓心到直線的距離然后與半徑比較.
解答: 解:(1)點A(
2
,
π
4
)在直線l上,得
2
cos(θ-
π
4
)=a,∴a=
2
,
故直線l的方程可化為:ρsinθ+ρcosθ=2,
得直線l的直角坐標(biāo)方程為x+y-2=0;
(2)消去參數(shù)α,得圓C的普通方程為(x-1)2+y2=1
圓心C到直線l的距離d=
1
2
<1,
所以直線l和⊙C相交.
點評:本題主要考查了簡單曲線的極坐標(biāo)方程,以及圓的參數(shù)方程和直線與圓的位置關(guān)系的判定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某校教師趣味投籃比賽中,比賽規(guī)則是:每場投6個球,至少投進4個球且最后2個球都投進者獲獎;否則不獲獎.已知教師甲投進每個球的概率都是
2
3

(1)記教師甲在每場的6次投球中投進球的個數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)求教師甲在一場比賽中獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(5x2+2x-3)2-(x2-2x-3)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:點A(sinα,cosα)與B(a2,2)在直線x+y-
3
=0的兩側(cè),命題Q:函數(shù)f(x)=ln|x|在(-∞,0)上單調(diào)遞減,則下列命題是真命題的是
 

①¬P;   ②P∨Q;   ③P∧Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義域為R的奇函數(shù)f(x)滿足f(1+x)=-f(x),則下列結(jié)論:
①f(x)的圖象過點(1,0);
②f(x)的圖象關(guān)于直線x=
1
2
對稱;
③f(x)是周期函數(shù),且2是它的一個周期;
④f(x)在區(qū)間(-1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

填空:
(1)a=
1
2
,b=
1
3
,則
3a2-ab
3a2+5ab-2b2
=
 

(2)若x2+xy-2y2=0,則
x2+3xy+y2
x2+y2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=x2的圖象與直線x=1、x=2和x軸所圍成的封閉圖形的面積是( 。
A、3
B、
7
3
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)z滿足(2+i)z=5i(i是虛數(shù)單位),則z( 。
A、1+2iB、-1+2i
C、2+iD、1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三位同學(xué)被調(diào)查是否去過A、B、C三個城市,甲說:我去過的城市比乙多,但沒去過B城市;乙說:我沒去過C城市;丙說:我們?nèi)巳ミ^同一城市;由此可判斷乙去過的城市為( 。
A、AB、BC、CD、A和B

查看答案和解析>>

同步練習(xí)冊答案