【題目】已知拋物線上任意一點(diǎn)到其焦點(diǎn)的距離的最小值為1.為拋物線上的兩動(dòng)點(diǎn)(、不重合且均異于原點(diǎn)),為坐標(biāo)原點(diǎn),直線、的傾斜角分別為,.

1)求拋物線方程;

2)若,求證直線過定點(diǎn);

3)若為定值),探求直線是否過定點(diǎn),并說(shuō)明理由.

【答案】1;(2)證明見解析;(3)是,理由見解析.

【解析】

1)根據(jù)拋物線的定義結(jié)合已知求出的值,最后寫出拋物線的標(biāo)準(zhǔn)方程;

2)設(shè)出直線的方程與拋物線方程聯(lián)立,由已知可以得到,結(jié)合平面向量數(shù)量積坐標(biāo)運(yùn)算公式、一元二次方程根與系數(shù)關(guān)系,最后得到直線過定點(diǎn);

3)根據(jù)(2)中的特例,再結(jié)合,根據(jù)兩角和的正切公式、直線傾斜角和斜率的關(guān)系,最后能求出直線所過定點(diǎn).

1)設(shè)為拋物線上任一點(diǎn),為焦點(diǎn),則

故拋物線方程.

2)設(shè),,聯(lián)立,

,

,即

.

得已,從而直線過定點(diǎn).

3)由(2),,

當(dāng)時(shí),

,故,

于是直線經(jīng)過定點(diǎn).

當(dāng)時(shí),,

,

,

.

故直線,即為,

故直線過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線Cy2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(Ⅰ)當(dāng)曲線在點(diǎn)處的切線與直線垂直時(shí),判斷函數(shù)在區(qū)間上的單調(diào)性;

(Ⅱ)若函數(shù)在定義域內(nèi)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,點(diǎn)中點(diǎn),底面為梯形,,.

(1)證明:平面;

(2)若四棱錐的體積為4,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)上.

(1)求橢圓的方程;

(2)若直線與橢圓相交于,兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為.我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用.已知,直線與橢圓有且只有一個(gè)公共點(diǎn).

1)求的值

2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)分別作該橢圓的兩條切線,且交于點(diǎn).當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,且橢圓的一個(gè)焦點(diǎn)在圓上.

(1)求橢圓的方程;

(2)已知橢圓的焦距小于,過橢圓的左焦點(diǎn)的直線與橢圓相交于兩點(diǎn),若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙、丙三個(gè)企業(yè)的產(chǎn)品成本(單位:萬(wàn)元)及其構(gòu)成比例,則下列判斷正確的是(  )

A. 乙企業(yè)支付的工資所占成本的比重在三個(gè)企業(yè)中最大

B. 由于丙企業(yè)生產(chǎn)規(guī)模大,所以它的其他費(fèi)用開支所占成本的比重也最大

C. 甲企業(yè)本著勤儉創(chuàng)業(yè)的原則,將其他費(fèi)用支出降到了最低點(diǎn)

D. 乙企業(yè)用于工資和其他費(fèi)用支出額比甲丙都高

查看答案和解析>>

同步練習(xí)冊(cè)答案