【題目】某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽 全校學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:


組別

分組

頻數(shù)

頻率

1

[50,60

8

0 16

2

[60,70

a


3

[70,80

20

0 40

4

[80,90


0 08

5

[90,100]

2

b


合計(jì)



1)求出的值;

2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng)

)求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;

)求所抽取的2名同學(xué)來自同一組的概率

【答案】1.(2)(.(

【解析】

1)由題意可知,

2)()由題意可知,第4組共有4人,記為,第5組共有2人,記為

從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有

15種情況.

設(shè)隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5為事件,

9種情況.

所以隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率是

)設(shè)隨機(jī)抽取的2名同學(xué)來自同一組為事件,有7種情況.

所以隨機(jī)抽取的2名同學(xué)來自同一組的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月,兩種移動(dòng)支付方式的使用情況,從全校學(xué)生隨機(jī)抽取了100人,發(fā)現(xiàn)使用支付方式的學(xué)生共有90人,使用支付方式的學(xué)生共有70人,,兩種支付方式都使用的有60人,則該校使用支付方式的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在50個(gè)不同地區(qū)的零售價(jià)格全部介于13元與18元之間,將各地價(jià)格按如下方式分成五組:第一組,第二組,……,第五組.如圖是按上述分組方法得到的頻率分布直方圖.

1)求價(jià)格落在內(nèi)的地區(qū)數(shù);

2)借助頻率分布直方圖,估計(jì)該商品價(jià)格的中位數(shù)(精確到0.1);

3)現(xiàn)從這兩組的全部樣本數(shù)據(jù)中,隨機(jī)選取兩個(gè)地區(qū)的零售價(jià)格,記為,,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)處的切線方程;

(2)令,討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,兩焦點(diǎn)分別為,橢圓上一點(diǎn)到的距離之和為12.的圓心為.

1)求的面積;

2)若橢圓上所有點(diǎn)都在一個(gè)圓內(nèi),則稱圓包圍這個(gè)橢圓.問:是否存在實(shí)數(shù)k使得圓包圍橢圓?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)x萬(wàn)件,需另投入流動(dòng)成本C(x)萬(wàn)元,當(dāng)年產(chǎn)量小于7萬(wàn)件時(shí),C(x)=x2+2x(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),C(x)=6x+1nx+﹣17(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.

(1)寫出年利潤(rùn)P(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收人﹣固定成本﹣流動(dòng)成本

(2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?(取e3≈20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求實(shí)數(shù)取值的集合;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)集,.從集合Mn中任取兩個(gè)不同的點(diǎn),用隨機(jī)變量X表示它們之間的距離.

1)當(dāng)n=1時(shí),求X的概率分布;

2)對(duì)給定的正整數(shù)nn≥3),求概率PXn)(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案