【題目】已知當(dāng)x∈[0,1]時(shí),函數(shù)y=(mx-1)2的圖象與ym的圖象有且只有一個(gè)交點(diǎn),求正實(shí)數(shù)m的取值范圍.

【答案】m∈(0,1]∪[3,+∞).

【解析】試題分析:分0<m≤1和m>1,做出函數(shù)y=(mx-1)2的圖象與ym的圖象,進(jìn)而可求參數(shù)正實(shí)數(shù)m的取值范圍.

試題解析:

y=(mx-1)2m2,相當(dāng)于yx2向右平移個(gè)單位,再將函數(shù)值放大m2倍得到的;

ym相當(dāng)于y向上平移m個(gè)單位.

①若0<m≤1,兩函數(shù)的圖象如圖1所示,可知兩函數(shù)在x∈[0,1]上有且只有1個(gè)交點(diǎn),符合題意.

②若m>1,兩函數(shù)的大致圖象如圖2所示.

為使兩函數(shù)在x∈[0,1]上有且只有1個(gè)交點(diǎn),只需(m-1)2≥1+m,得m≥3或m≤0(舍去).

綜上,m∈(0,1]∪[3,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,其中, , 表示中所有不同值的個(gè)數(shù).

)設(shè)集合, ,分別求

)若集合,求證:

是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

I)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);

II)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽(tīng)課時(shí)間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過(guò)點(diǎn)B(12,78);當(dāng)x∈[12,40]時(shí),圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.

(1)試求y=f(x)的函數(shù)關(guān)系式;

(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),的極大值為7;當(dāng)時(shí),有極小值.

(1)的值;

(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心軌跡為曲線

(1)求曲線的方程;

(2)若是曲線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn),直線交曲線

于另一點(diǎn),求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,F1、F2是橢圓C1y2=1與雙曲線C2的公共焦點(diǎn),AB分別是C1、C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)四邊形的頂點(diǎn)在橢圓上,且對(duì)角線、過(guò)原點(diǎn),若,

(1)求的最值;

(2)求證;四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過(guò)點(diǎn)A1,-2.

I)求拋物線C的方程,并求其準(zhǔn)線方程;

II)是否存在平行于OAO為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案