在△ABC中,若sinB:sinC=3:4,則邊c:b=
 
考點(diǎn):正弦定理
專題:解三角形
分析:利用正弦定理把角的正弦轉(zhuǎn)化為三角形的邊,即可.
解答: 解:由正弦定理知
b
sinB
=
c
sinC
=2R,
∴b=2RsinB,c=sinC•2R,
∴c:b=sinC:sinB=4:3,
故答案為:4:3
點(diǎn)評(píng):本題主要考查了正弦定理的應(yīng)用.正弦定理和余弦定理在解三角形問題中常用來完成邊角問題的轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)y=2 
1
x
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC三內(nèi)角A,B,C所對(duì)的三邊長(zhǎng)分別為a,b,c,且面積S△ABC=
1
4
(b2+c2-a2),求角A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,8b=5c,∠C=2∠B,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
b
a
方向上的投影
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a,b,c表示直線,M表示平面,給出下列四個(gè)命題:
①若a∥M,b∥M,則a∥b;   
②若b?M,a∥b,則a∥M;
③若a⊥c,b⊥c,則a∥b;     
④若a⊥M,b⊥M,則a∥b.
其中正確命題的序號(hào)是
 
(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=logm(msin2x-2msinx+3)(x∈R)的值總不是負(fù)數(shù),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域是[-1,1],則函數(shù)F(x)=f(1-x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是雙曲線C1:x2-
y2
3
=1與橢圓C2的公共焦點(diǎn),點(diǎn)A是C1,C2在第一象限的公共點(diǎn).若|F1F2|=|F1A|,則C2的離心率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案