計(jì)算:0.0081
1
4
+(4-
3
4
2+(
8
)-
4
3
-16-0.75
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)有利指數(shù)的冪化簡(jiǎn)即可.
解答: 解:0.0081
1
4
+(4-
3
4
2+(
8
)-
4
3
-16-0.75=(0.34)
1
4
+(22)-
3
2
+(2
3
2
)-
4
3
-(24)-
3
4
=0.3+
1
8
+
1
4
-
1
8
=0.55.
故答案為:0.55
點(diǎn)評(píng):本題主要考查了有理指數(shù)冪,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)與一個(gè)頂點(diǎn)組成一個(gè)直角三角形的三個(gè)頂點(diǎn),且橢圓E過(guò)點(diǎn)M(2,
2
),O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且
OA
OB
?若存在,寫(xiě)出該圓的方程,并求該切線在y軸上截距的取值范圍及|AB|的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知∠A,∠B,∠C的對(duì)邊分別為a,b,c,且a=2,∠B-∠C=
π
2
,△ABC面積為
3
.   
(1)求證:sinA=cos2C;
(2)求邊b的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有A,B兩個(gè)盒子,A盒中裝有3個(gè)紅球,2個(gè)黑球,B盒中裝有2個(gè)紅球,3個(gè)黑球,現(xiàn)從A,B兩個(gè)盒子中各取2個(gè)球互換,假定取到每個(gè)球是等可能的.
(Ⅰ)求B盒中紅球個(gè)數(shù)不變的概率;
(Ⅱ)互換2球后,B盒中紅球的個(gè)數(shù)記為ξ,寫(xiě)出ξ的分布列,并求出ξ的期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某汽車(chē)廠生產(chǎn)的A,B,C三類(lèi)轎車(chē),每類(lèi)轎車(chē)均有舒適性和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛)
轎車(chē)A轎車(chē)B轎車(chē)C
舒適性800450200
標(biāo)準(zhǔn)型100150300
(Ⅰ)在這個(gè)月生產(chǎn)的轎車(chē)中,用分層抽樣的方法抽取n輛,其中有A類(lèi)轎車(chē)45輛,求n的值;
(Ⅱ)在C類(lèi)轎車(chē)中,用分層抽樣的方法抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2輛,求至少1輛舒適性轎車(chē)的概率;
(Ⅲ)用隨機(jī)抽樣的方法從A類(lèi)舒適性轎車(chē)中抽取10輛,經(jīng)檢測(cè)它們的得分如下:,8.7,9.3,8.2,9.4,8.6,9.2,9.6,9.0,8.4,8.6,把這10輛轎車(chē)的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
2
34
632

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點(diǎn)E是PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)求直線BP與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F(xiàn)2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2,斜率為k(k≠0)的直線l與橢圓C相交于E,F(xiàn)兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.試問(wèn):k•k′是否為定值?若為定值請(qǐng)求出;若不為定值請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,E是BC的一個(gè)四等分點(diǎn),F(xiàn)是DC的一個(gè)三等分點(diǎn),且
AB
=
a
,
AD
=
b
,試用
a
,
b
表示下列向量:
(1)
DE
=
 

(2)
BF
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案