【題目】已知橢圓 的上下頂點分別為,且點 分別為橢圓的左、右焦點,且

(Ⅰ)求橢圓的標準方程;

(Ⅱ)是橢圓上異于, 的任意一點,過點軸于, 為線段

的中點.直線與直線交于點 為線段的中點, 為坐標原點.求

的大小.

【答案】(1)(2)見解析

【解析】試題分析:(1)由頂點坐標得再在中利用橢圓幾何條件得.(2)利用向量數(shù)量積研究的大。仍O 則得 .求出直線與直線交點,得 .再根據(jù)向量數(shù)量積得,根據(jù)代入化簡得,即得

試題解析:解:(Ⅰ)依題意,得.又,

中, ,所以

所以橢圓的標準方程為

(Ⅱ)設 ,則

因為點在橢圓上,所以.即

,所以直線的方程為

,得

, 為線段的中點,所以

所以,

因為

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), , ),是自然對數(shù)的底數(shù).

(Ⅰ)當, 時,求函數(shù)的零點個數(shù);

(Ⅱ)若,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左焦點與拋物線的焦點重合,直線與以原點為圓心,以橢圓的離心率為半徑的圓相切.

(Ⅰ)求該橢圓的方程;

(Ⅱ)過點的直線交橢圓于, 兩點,線段的中點為 的垂直平分線與軸和軸分別交于, 兩點.記的面積為, 的面積為.問:是否存在直線,使得,若存在,求直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2﹣ax﹣2=0的兩個實根,不等式m2+5m﹣3≥|x1﹣x2|對任意實數(shù)α∈[﹣1,1]恒成立;若¬p∧q為真,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,且函數(shù).

)當函數(shù)上的最大值為3時,求的值;

)在()的條件下,若對任意的,函數(shù), 的圖像與直線有且僅有兩個不同的交點,試確定的值.并求函數(shù)上的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx和反比例函數(shù) 在同一坐標系中的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為I的函數(shù)y=f(x),如果存在區(qū)間[m,n]I,同時滿足:
①f(x)在[m,n]內是單調函數(shù);
②當定義域是[m,n],f(x)值域也是[m,n],則稱[m,n]是函數(shù)y=f(x)的“好區(qū)間”.
(1)設g(x)=loga(ax﹣2a)+loga(ax﹣3a)(其中a>0且a≠1),求g(x)的定義域并判斷其單調性;
(2)試判斷(1)中的g(x)是否存在“好區(qū)間”,并說明理由;
(3)已知函數(shù)P(x)= (t∈R,t≠0)有“好區(qū)間”[m,n],當t變化時,求n﹣m 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小張在淘寶網上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網上的其它網店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關于售價x(元)(x∈Z+)的函數(shù)關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲等費用)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于R上的可導函數(shù)f(x),若a>b>1且有(x﹣1)f′(x)≥0,則必有(
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)

查看答案和解析>>

同步練習冊答案